Available online at www.sciencedirect.com

ScienceDirect COMPUTER
CrossMark SPEECH D

LANGUAGE

www.elsevier.com/locate/csl

e

S A SEes
ELSEVIER Computer Speech and Language 40 (2016) 1-22

Semantic language models with deep neural networks

Ali Orkan Bayer *, Giuseppe Riccardi

Signals and Interactive Systems Lab, Department of Information Engineering and Computer Science, University of Trento, Italy

Received 22 October 2015; received in revised form 29 February 2016; accepted 17 April 2016
Available online 4 May 2016

Abstract

In this paper we explore the use of semantics in training language models for automatic speech recognition and spoken lan-
guage understanding. Traditional language models (LMs) do not consider the semantic constraints and train models based on fixed-
sized word histories. The theory of frame semantics analyzes word meanings and their constructs by using “semantic frames”.
Semantic frames represent a linguistic scene with its relevant participants and their relations. They are triggered by target words
and include slots which are filled by frame elements. We present semantic LMs (SELMs), which use recurrent neural network
architectures and the linguistic scene of frame semantics as context. SELMs incorporate semantic features which are extracted
from semantic frames and target words. In this way, long-range and “latent” dependencies, i.e. the implicit semantic dependencies
between words, are incorporated into LMs. This is crucial especially when the main aim of spoken language systems is under-
standing what the user means. Semantic features consist of low-level features, where frame and target information is directly used;
and deep semantic encodings, where deep autoencoders are used to extract semantic features. We evaluate the performance of SELMs
on publicly available corpora: the Wall Street Journal read-speech corpus and the LUNA human—human conversational corpus.
The encoding of semantic frames into SELMs improves the word recognition performance and especially the recognition perfor-
mance of the target words, the meaning bearing elements of semantic frames. We assess the performance of SELMs for the un-
derstanding tasks and we show that SELMs yield better semantic frame identification performance compared to recurrent neural
network LMs.
© 2016 Elsevier Ltd. All rights reserved.

Keywords: Language modeling; Recurrent neural networks; Frame semantics; Semantic language models; Deep autoencoders

1. Introduction

Statistical language models (LMs) are one of the main knowledge sources in language processing systems such as
statistical machine translation, information retrieval, automatic speech recognition (ASR), and spoken language un-
derstanding (SLU). They play a crucial role in searching for the best hypothesis by estimating the likelihood of each
hypothesis in that language.

Traditional LMs are based on n-gram models, where the probability of a word is only dependent on the previous
(n— 1) words. Although currently the state-of-the-art performance for LMs is obtained by using recurrent neural net-
works (RNNs), n-gram LMs are still widely used because of their simple computational architecture and also because
they scale well (Chelba et al., 2012, 2013) on large data. However, since n-gram LMs are trained by considering fixed

* Corresponding author at: Signals and Interactive Systems Lab, Via Sommarive, 5 38123 Povo, Trento, Italy. Tel.: +39 3209714240; fax: +39
0461283166.
E-mail address: aliorkan.bayer@unitn.it (A.O. Bayer), giuseppe.riccardi @unitn.it (G. Riccardi).

http://dx.doi.org/10.1016/j.cs1.2016.04.001
0885-2308/© 2016 Elsevier Ltd. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csl.2016.04.001&domain=pdf
http://www.sciencedirect.com
http://www.elsevier.com/locate/csl

2 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

size histories of words, they suffer from the “locality problem” (Bellegarda, 2000a). As suggested by Bellegarda (2000a),
this problem can be solved by “span extension”. Span extension can be performed either by using syntactic depen-
dencies or semantic relations. This paper explores the use of lexical semantics for improving the performance of LMs.

One of the approaches that incorporates semantic information into LMs is the topic model (Gildea and Hofmann,
1999; Schwartz et al., 1997). Topics may be selected from a hand-crafted set or can be learned by data-driven ap-
proaches. Topic LMs model the probability of a word in a topic and do not consider the local structure of the lan-
guage. Therefore they are combined with n-gram models.

Another approach for semantic span extension is to use trigger pairs. Trigger pairs capture semantic relations by
using the correlation between words (Rosenfeld, 1996). Therefore if a word sequence A is significantly correlated
with a word sequence B, they constitute a trigger pair. Then, A is referred to as the trigger and B as the triggered
sequence. Rosenfeld (1996) reports that self triggers are very powerful and robust. Also trigger pairs of frequent words
have more potential than the trigger pairs of infrequent words. Trigger pairs are determined by using the average mutual
information between the trigger and the triggered sequence. Trigger pairs are very effective to handle the long-range
dependencies. However, selection of trigger pairs is an issue.

Bellegarda (2000a, 2000b) uses latent semantic analysis (LSA) to extend the trigger pairs approach. LSA (Berry
et al., 1995; Deerwester et al., 1990) is used as an indexing mechanism in information retrieval, and it maps the dis-
crete space of words and documents to the same continuous space. Therefore, each word and each document is rep-
resented as a vector in this space. A word-document matrix, in which each column represents a document and each
row represents a word, is constructed by populating the matrix values by normalized counts of the words in the docu-
ments. The normalization is done with respect to the number of documents in which the word occurs. Because of the
computational requirements, singular value decomposition is applied to this matrix. The final representation concep-
tually represents each word and document as a linear combination of abstract concepts, which is very similar to the
distributed representations the neural network LMs use. At the final step, LMs are modeled over the LSA history of
the word. Combining LSA with n-gram models resulted in significant improvements in perplexity and word error rate
(Bellegarda, 2000a, 2000b).

Traditional LMs also suffer from “curse of dimensionality” (Bengio et al., 2003), i.e. they consider words as se-
quence of symbols and do not model the semantic relationships between these words. This problem is approached by
learning distributed representations (also known as word embeddings) of words (Bengio et al., 2003), i.e. words are
mapped onto a continuous space. Neural network LMs (NNLMs) are first introduced in Bengio et al. (2003). NNLMs
learn and use distributed representations of words in language modeling. NNLMs are reported to reduce the perplex-
ity significantly (Bengio et al., 2003). Also Schwenk (2007) applies NNLMs to ASR which reports significant im-
provements in word error rate (WER) by linearly interpolating NNLMs with back-off n-gram LMs. The first approach
to NNLMs were feed-forward NNLMs which are based on fixed size histories; therefore they also suffer from the
problems related to fixed size histories. Recurrent NNLMs (RNNLMs) (Mikolov, 2012; Mikolov et al., 2010), over-
come this problem by using recurrent connections, which feed the activation of the hidden layer at the previous time
step as input. This can be thought of as a short-term memory which enables the network to model long-range histo-
ries. RNNLMs are shown to improve perplexities and WERs better than any feed-forward NNLM (Mikolov et al.,
2011a). Mikolov and Zweig (2012) add a feature layer to RNNLMs, where topic features are used as additional context
to the NNLM. In addition, Mikolov et al. (2011b) present the training of maximum entropy features jointly with the
RNNLM which are referred to as RNNME.

When building LMs for a specific application, LMs are tuned with respect to the performance metric of the target
application. This may lead to problems especially for spoken dialog systems, where one of the main goals of these
systems is to extract user intentions and the meaning of utterances. Spoken dialog systems most often use a cascaded
approach, where the output of the ASR is fed into the SLU module. The LMs that are used in ASR and SLU are op-
timized with respect to the component that they are trained for. LMs for ASR are optimized to lower the WER. LMs
are optimized to lower the concept error rate (CER) in SLU. In the literature, it has been argued that LMs should be
optimized jointly, since the best recognition performance does not yield the best understanding performance (Deoras
et al., 2013; Riccardi and Gorin, 1998; Wang et al., 2003). Therefore, it is important that LMs are trained by consid-
ering semantic constraints in that language.

As we have mentioned traditional n-gram LMs suffer from the “locality problem” and “curse of dimensionality”.
The semantic span extension approaches like the topic model (Gildea and Hofmann, 1999; Schwartz et al., 1997) can
only be used through a combination of the model with an n-gram LMs. Trigger pairs (Rosenfeld, 1996) offer an

A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22 3

68.8f .]
68.41 . 1
68.0t

3 67.6]

o

~

[N)
.

66.8} t T i

rror Rate (9

E
o
o
>

.

o)

o

=)
.

Target

65.6f P S 1

65.2¢

64.8} L |

64.4F |))) B
34.2 34.6 35.0 35.4
Word Error Rate (%)

Fig. 1. The scatter plot of WER versus TER for random selections of hypotheses from the 100-best list of the test set of LUNA HH corpus.

effective way to handle long-range dependencies; however, selection of trigger pairs is the main issue. LMs built by
using LSA use distributed representations for each document and word; however, these representations are extracted
statistically and are not able to incorporate any real world knowledge into LMs. Neural network LMs deal with “curse
of dimensionality”; however, they do not use any explicit semantic constraints on LMs. This paper presents semantic
LMs (SELMs) that are built over lexical semantics resources; therefore, they incorporate semantics and world knowl-
edge that is present in these resources into LMs. In addition, SELMs use the structure of RNNLMs to handle “curse
of dimensionality”.

Considering the discussions related to the evaluation of LMs (Deoras et al., 2013; Riccardi and Gorin, 1998; Wang
et al., 2003), in this paper we evaluate LMs both on WER and target error rate (TER) for the recognition perfor-
mance, and on frame identification accuracy for the understanding performance. TER measures the errors that are
made on the main meaning bearing elements of semantic frames; therefore TER is a good proxy for the understand-
ing performance. The computation of TER is similar to WER except that it is computed only on the target words.
Fig. 1 shows the scatter plot of TER and WER of random selection of hypotheses from the n-best hypotheses on LUNA
HH corpus. It is possible to select the hypotheses in various ways during re-scoring. It can be seen that some selec-
tions that would lower WER, could make TER higher. In this way the system improves its transcription performance;
however, it fails to recognize the meaning bearing words that are important in defining the meaning of the utterance.
We argue that LMs need to be optimized also for recognizing the meaning bearing elements, hence for understand-
ing, by considering semantic constraints and the evaluation of LMs needs to include both metrics and the understand-
ing performance.

In this paper, we introduce semantic LMs (SELMs) that are trained with lexical and semantic constraints. Lexical
constraints are imposed by using the words as the units of the LM, and semantic constraints are imposed by the se-
mantic context of utterances that is extracted by using the target words and semantic frames. The structure of the paper
is as follows. Section 2 describes the structure of SELMs. Section 3 presents the features used in SELMs. Section 4
defines the experimental setting. The experimental work is described in Section 5 for the Wall Street Journal (WSJ)
speech recognition corpus, and in Section 6 for the Italian LUNA human—human (LUNA HH) corpus. Finally, Section 7
concludes the paper.

2. Semantic language models

SELMs were first introduced in Bayer and Riccardi (2014) for incorporating semantic information in LMs. The
aim of exploiting semantic information in LMs is to model the implicit semantic dependencies between words, which

4 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

also involves long-range dependencies that cannot be handled by local structures. Also, incorporating semantic con-
straints would yield LMs that are optimized for the recognition of meaning bearing words, which would have a better
understanding performance.

In this respect, we choose to use the theory of frame semantics, which is a theory of lexical semantics to construct
the linguistic scene. The linguistic scene that is constructed over frame semantics constitutes the pragmatic informa-
tion about the utterance. In the commercial event scenario example by Fillmore (1976); the commercial event frame
contains roles or slots like the buyer, the seller, the goods, and the money. Therefore, the identification of a frame
predicts the existence of its relevant roles which are closely related to the relevant words for that frame.

2.1. Frame semantics

Frame semantics is the theory of lexical meaning (Fillmore et al., 2003). In the theory of frame semantics word
meanings are defined in the context of semantic frames which are evoked by farget words or targets (Fillmore et al.,
2003). Each frame has elements called frame elements that complete the meaning of that frame. FrameNet project
(Fillmore et al., 2003) is a resource that describes the semantic frames and their relationship between each other. An
example sentence taken from the FrameNet project is presented below:

[Lee] sold [a textbook] [to Abby]

This sentence is an example for the “Commerce Sell” frame. The target word “sold” evokes the “Commerce Sell”
frame. The “Commerce Sell” frame has the frame elements Seller, Goods, and Buyer filled by Lee, a textbook, and
to Abby respectively. Hence, frame semantics predicts the existence of related roles (Seller, Goods, and Buyer) for
the semantic frame, which can be thought as the world knowledge about lexical items.

Fig. 2 presents the intuition behind SELMs with an example from Penn-Treebank (Marcus et al., 1993). In this
example, the frames “Being at Risk”, “Commerce Scenario” and “Commerce Sell” create a linguistic scene where
the non-target word “market” is an expected relevant word to this scene. Semantic frames create a linguistic scene
and raise the expectation of relevant words in this linguistic scene. The frames that create this linguistic scene can
occur anywhere in the utterance, therefore the whole utterance should be considered.

FrameNet is a public lexical resource for employing world knowledge in natural language understanding systems.
The project is on-going and the coverage is improving. The FrameNet version 1.5 contains 1019 frames with around
12,000 lexical entries. However, FrameNet is still limited because of the manual effort needed to annotate the frames.
FrameNet has also been ported to other languages. Also, it is possible to augment the coverage of FrameNet by con-
sidering domain specific frames or considering the style of the linguistic text. Tonelli and Riccardi (2010) present the
methodology used to extend the FrameNet frames to Italian and to a target application domain. In addition Tonelli
and Riccardi (2010) extended the FrameNet resource frames to cover the case of oral communication.

While Friday's debacle involved mainly professional
Catastrophe People by Vocation
traders rather than investors, it left the market
Commerce Scenario
vulnerable to continued selling this morning,
Being at Risk Commerce Sell
traders said.

Commerce Scenario

Fig. 2. An example sentence from Penn-Treebank. Some of the target words are shown in bold, the frames that are evoked are shown in gray. The
linguistic scene constructed by the frames “Being at Risk”, “Commerce Scenario” and “Commerce Sell” helps in predicting the relevant non-
target word “market”, which is shown in italics.

A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22 5

2.2. Model structure

SELMs are neural network LMs that are based on the RNNLM (Mikolov et al., 2010) architecture. This section
first presents the RNNLMs and then describes the SELM architecture.

2.2.1. RNN language models

RNNLMs (Mikolov et al., 2010) use recurrent connections to propagate the state of the network through time to
handle long-range dependencies. The major computational complexity of RNNLM:s is the size of the vocabulary. This
complexity can be reduced by using a class-based approach at the output layer. In this approach, the words in the
vocabulary are clustered based on their unigram frequencies. The joint probability of a word and its class is factor-
ized into the class membership probability and the class probability as given in Mikolov et al. (2011c).

It has been shown that RNNLMs can be trained jointly with maximum entropy features. Mikolov (2012) presents
the training of n-gram maximum entropy features jointly with an RNNLM model using a hash based implementa-
tion. This approach uses hash functions that map all the n-grams for the history of the current word (from unigram to
a given n-gram degree) to a binary vector of a given size.' The maximum entropy features on these vectors of n-gram
histories are modeled by using direct connections. In the class-based approach, half of these connections are re-
served for class probabilities and half of these connections are used for class membership probabilities and two dif-
ferent hash functions are used for classes and words. These models are referred to as RNNME models and shown to
outperform RNNLMs (Mikolov, 2012).

Class-based RNNME models have the following parameters™:

* W,: The weights between the input layer and the hidden layer.

* W.: The weights between the previous hidden and the current hidden layer (recursive connections).

* W,.: The weights between the hidden layer and the class layer.

* W, : The weights between the hidden layer and the word layer.

e W : The direct connections between the hashed n-grams and the class layer (direct connections to classes).
* W,, : The direct connections between the hashed n-grams and the word layer (direct connections to words).
* by: Biases of the hidden layer.

* b.: Biases of the class layer.

* by: Biases of the word layer.

In addition class-based RNNMEs have the following inputs:

* we 1-of-n encoding of the word at time ¢ (the current word).

* s, ;: The previous state of the network.

* hei: The output of the class hash function for n-gram histories at time ¢.
* hw: The output of the word hash function for n-gram histories at time .

We define o(x) as the sigmoid function given by Equation 1, and o(x) as the softmax function. The ith component
of the softmax function for a layer that has N units is defined by Equation 2.

ey

iToN . 2)
e
n=l1
The recursive state of the class-based RNNME model at time ¢ is defined by Equation 3.

! During this mapping some n-grams may overlap.
2 We use bold uppercase symbols for matrices, and bold lowercase symbols for vectors. All the vectors defined are column vectors.

6 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

P(WM | CIM, w,s, . hwt) P(Clm | w,s, . hct)
Word Layer Class Layer
de .
Hidden Layer (s) W,

W h
W W

n-gram Layer | | Input Layer Recurrent Layer | | n-gram Layer

T T T T

hw w hc
t t

S
t t-1

Fig. 3. The class-based RNNME architecture. The network takes the current word w;, previous state S, and the output of hash functions of n-gram
histories hw; and he; as input. The output layer estimates the joint probability of the next word w,,; and its class cl,, by factorizing into class
probabilities and class-membership probabilities. The maximum entropy features on n-grams are implemented as direct connections from the hash
functions of n-gram histories to either the class layer or the word layer. The weights between each connection is shown in bold as Wy.

st =W,w,+Ws,_, +by, 3)
The class probability of the next word is given by Equation 4.
P(cly |St—1, w,, hey) = a (Wi o (s,) + Wache, +b,) €]

The class membership probabilities of words are given by Equation 5, where & defines the softmax function only
over the words that belong to the class cl,,. o

P(WHl |CIt+1’ stfl’ wt’ Wt) =« (tho-(st) + dehwt + bw)

clpyr

®)

The joint probability of the words and their classes can be calculated by the multiplication of Equation 4 and
Equation 5. The class-based RNNME architecture is depicted in Fig. 3.

2.2.2. SELM structure

The computational architecture of SELMs is based on the class-based RNNME structure, and it is shown in Fig. 4.
In Fig. 4 the n-gram maximum entropy features are not shown for simplicity. SELMs have the following additional
parameters with respect to class-based RNNMEs:

* W, : The weights between the context layer and the hidden layer. These weights are only employed when low-
level semantic encodings are used.

e W,.: The weights between the context layer and the class layer.

e W,, : The weights between the context layer and the word layer.

SELMs, compared to RNNMEs, use the semantic context of the utterance when estimating the word probabilities.
The semantic context, sc, is computed for each utterance and fed into the SELM at the context layer. As discussed in
the next section, semantic context can be a low-level representation that shows which frames or targets occur in that
utterance; or a high-level encoding which is computed by an encoder network. In the case where the low-level rep-
resentation is used, we connect the context layer to the hidden layer, the class layer, and the word layer. On the other
hand, when the high-level encoding is used, we do not employ the connections between the context layer and the

A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22 7

Pw,, |cl ., w,s, hw,sc) P(cl |w,s,,, hc,sc)

o T

Word Layer Class Layer

Hidden Layer (s,)

h e
W, w, ¥ Wy

Input Layer Recurrent Layer | | Context Layer

T T !

w, S, sc

Fig. 4. The SELM structure, the direct connections for n-gram maximum entropy modeling are not shown. The network takes the current word
wy, the previous state S;, the output of hash functions for n-gram histories (not shown), and the semantic context sc¢ for the current utterance as
input. The output layer estimates the joint probability of the next word w,,; and its class cl,.;. When low-level semantic context is used the context
layer is connected also to the hidden layer (dashed arrow). However, when high-level semantic context is used, there is no connection between the
context layer and the hidden layer.

hidden layer since this encoding is computed by a deep encoder, and it is already a non-linear function of the frame
or target information. Therefore, when the low-level representation is used the state of the SELM at time, s, is given
by Equation 6a. However, when the high-level encodings are used the state s; is computed the same way as RNNME
which is repeated in Equation 6b.

s¢ = W,w, +W.s,_, + Wysc+b, (6a)
s¢ = Wyw, + W.s,_; +b, (6b)

The class probabilities and the class membership probabilities are given by Equation 7 and Equation 8 respectively,
provided that the corresponding state equation is used for each semantic context type.

P(cly |51, Wi, hey, se) = ot (Wi, 0 (s,) + Weche, + Wese+b,) 7
P(Weii|cliiis 51 Wi, hwy, s€) = o (Wawo (s¢) + Wa,hw, + W sc+b,,) (8)
Clr41

3. Semantic feature extraction

This section presents the semantic features that are used during the training of SELMs. We present two different
semantic features: (a) low-level features that directly use the semantic parse of the utterance (Semantic Context Encodings)
and (b) high-level features that are trained by using deep autoencoders (Deep Semantic Encodings).

SELMs use semantic features that are extracted from utterances. To extract these semantic features we use FrameNet
semantic parsers. A FrameNet semantic parser usually follows a three-step process (Das et al., 2014). The first step is
the target identification task which classifies words as target and non-target words. This step is usually based on a
rule-based algorithm. The second step is the frame identification step, where statistical models are used to identify
the correct frames that target words evoke. The final step is the frame element identification, which is also performed
by a statistical model. This step identifies and finds the span of the frame elements for each identified frame. In this
paper we have designed experiments for English and Italian corpora. We have used SEMAFOR (Das et al., 2014), a
FrameNet parser trained on general domain data, for English. We have used the LUNA FrameNet semantic parser
which is described in Coppola et al. (2009) for the Italian LUNA corpus. The LUNA semantic parser is trained on
the frames that are specific to the LUNA spoken conversation domain.

8 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

While Friday's debacle involved mainly professional traders rather than investors, it
left the market vulnerable to continued selling this morning, traders said.

:

SEMAFOR FrameNet Parser

i

Calendric unit,..., Commerce scenario, ..., Commerce sell, Calendric unit, Commerce scenario,...

[0,0,1,1,0,0,1............1,0,0,1,0,1,0,0]

Fig. 5. Semantic feature extraction for frames. The utterance is fed into the semantic parser, and the frames are extracted. The semantic feature is
a binary vector over frames, where the component at index i is set to 1, if the frame i occurs.

Semantic features are only extracted over the targets and frames of the utterances. We do not consider frame ele-
ments, since the identification of frame elements is very noisy at the current state-of-the-art.

3.1. Semantic context encodings

The low-level features are extracted directly by using the output of the semantic parser. These features are based
on either the targets detected or the frames identified. Low-level features represent the targets or frames with a binary
vector, in which a bit is set to 1 if the corresponding target or frame occurs in that utterance or set to O otherwise.
Therefore, the semantic vector represents each target or frame that occurs in that utterance. For example, the feature
extraction process for an English utterance proceeds as follows. First, the utterance is fed into the SEMAFOR frame-
semantic parser. Then the set of frames or targets in that utterance is extracted as features of the semantic context.
The feature extraction step for frames is depicted in Fig. 5.

3.2. Deep semantic encodings

In this section we present deep semantic encodings which aim at reducing the size of the semantic vector space
and eliminating the ASR noise in the semantic representations. The low-level feature vectors can be used to represent
the linguistic context; however, they are sparse vectors in a high-dimensional space which affects their performance.
Hinton and Salakhutdinov (2006) have shown that deep autoencoders can reduce the dimensionality of data with a
higher precision than principal component analysis. They have shown that for document similarity tasks deep autoencoders
outperform latent semantic analysis. Therefore, high-dimensional low-level semantic context can be represented in a
low-dimensional space with a high-level representation by means of autoencoders.

The noise introduced by the ASR when extracting the semantic information reduces the accuracy of semantic rep-
resentations. Deep semantic encodings may address this issue as well by smoothing the representations of the seman-
tic context. We use a similar approach to semantic hashing (Salakhutdinov and Hinton, 2009) for constructing high-
level representations of the semantic context.

Semantic hashing (Salakhutdinov and Hinton, 2009), which is used for document retrieval, maps documents to
binary vectors such that the Hamming distance between the binary vectors represents the similarity of documents. In
this way, documents can be stored in the memory address represented by binary vectors and can be retrieved effi-
ciently. In semantic hashing, a deep autoencoder that is composed of an encoder and a decoder is trained on bag-of-
words representation of content words in documents. The training is performed at two steps: unsupervised pretraining
by using restricted Boltzmann machines (RBMs) and fine-tuning by unrolling the network and applying back-
propagation on the reconstruction error. The middle layer of the deep autoencoder (code layer) is forced to produce
a binary vector by adding Gaussian noise to the input of each unit. We apply the same methodology to extract deep
semantic encodings, and the details are presented in Section 3.2.1. However, we use stochastic binary units at the
code layer to enforce binary vectors rather than adding Gaussian noise to the input of this layer; we apply it to ut-
terances rather than documents; and we use the targets or the frames of the utterance rather than the content words.

A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22 9

S

t
i Stochastic binary units
Code Layer output n-bit

semantic encodings

W3
| Hidden Layer2 |
w Continuous real-valued
2 hidden units

\ Hidden Layer 1 \

Bag-of-words
representation of
frames/targets

Fig. 6. The structure of the encoder network for the deep autoencoder used for semantic encoding. The input I; is the normalized bag-of-words
representation of targets or frames at time #. The state of the code layer S¢ is the n-bits binary encoding of I; at time ¢. The state of the code layer
is enforced to be binary by using stochastic binary units at that layer. The hidden layers use continuous valued units. The weights between layers
i and i+ 1 are represented with W;.

We train deep autoencoders to construct deep semantic encodings (Bayer and Riccardi, 2015). Autoencoders can
be thought of as a combination of an encoder and a decoder. The encoder encodes the input to a hidden representa-
tion, whereas the decoder decodes this hidden representation to re-construct the input. The structure of the encoder
that is used in this paper is given in Fig. 6. The first layer of this encoder is the input layer, which is a linear layer
activated by the bag-of-words representation of the frames or targets of an utterance. The code layer encodes these
representations to a binary vector. The binary representation is enforced by using stochastic binary units at that layer.
The state of a stochastic binary unit is determined by a random value in the interval [0, 1] that is created at run time.
If the activation of the unit is greater than that value, its state is set to 1; otherwise the state is set to 0. The activa-
tions at the code layer at time #, a,, is given by:

a, =0 (W;0(W,0(WI; +b,)+b3)+by) 9)
where b; is the biases of the layer i (the input layer has no biases) and W; is the weights between the layers i and
i + 1. Then, the state of the ith node at time ¢, sf;; is computed by:

0, if . <rand;, (0,1
st,-,,—{ i a;, <rand;,(0,1) (10)

1, otherwise

where a;, refers to the activation of node i at time ¢ and rand;,(0,1) is a random value in the interval [0, 1] for node
i at time t.

3.2.1. Training deep autoencoders

Training deep neural networks that have more than one hidden layer converges to a poor local minima if the weights
are randomly initialized and then gradient descent is used to learn the weights (Hinton and Salakhutdinov, 2006). However,
if a good initialization is done on the weights that is close to a good solution, gradient descent can converge to a good
solution. For this purpose, the training of deep autoencoders are performed in two phases. The first phase of training
deep neural networks is the unsupervised pretraining step that finds a good initialization of the weights by greedy
layer-by-layer training (Hinton et al., 2006). At the second phase, the backpropagation algorithm is used to train deep
neural networks in a supervised way (Hinton and Salakhutdinov, 2006). The input given to the deep autoencoders is
the normalized “bag-of-words” (BoW) vectors of frames or targets for each utterance. The deep autoencoder con-
structs n-bits encodings from these BoW vectors.

The first phase is the unsupervised pretraining phase as shown in Fig. 7. For this purpose, the greedy layer-by-
layer training (Hinton et al., 2006) is performed. In this approach, each pair of layers is modeled by restricted Boltzmann

10 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

\ Hidden Layer 1 \
A

y
| Input Layer |

Fig. 7. The unsupervised pretraining procedure. Each pair of layer is considered as a restricted Boltzmann machine, and the whole network is
trained in a greedy layer-by-layer approach. The code layer contains the units that will be used for binary encodings. All the layers use binary
valued units except for the nodes at the input layer, which use discrete valued units.

machines (RBMs) and each RBM is trained from bottom to top. RBMs have a visible layer and a hidden layer, where
the nodes in the same layer are not connected to each other. Parameters of RBMs are defined as follows:

e W: The weights between the nodes of the visible layer and the hidden layer (W; is the weight between the ith
visible node and jth hidden node).

e bv: The biases of the visible layer.

e bh: The biases of the hidden layer.

During the pretraining phase, the visible layer of the bottom RBM (RBM 1) is modeled by a constrained Poisson
model as given in Salakhutdinov and Hinton (2009), where the nodes of the visible layer have discrete values and the
nodes of the hidden layer have binary values. The probability of the ith node at the visible layer to have the activa-
tion value of n is given by:

p(v =n/h)=Ps(n; (W'h+bv) *N) (11)
where ¢(x), is the softmax function defined by Equation 2, N is the sum of the all activation at the visible layer, h is

the activations of the hidden layer, and Ps(n, A) is defined by the probability mass function of X that has a Poisson
distribution with mean A.

et

n!

12)

Ps(n;A)=Pr(X=n)=

The probability of the jth node at hidden layer to have a value of 1 is given by:

p(h; :1|v):o'(bhj +2vv,jvij (13)

A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22 11

O(
Output Layer Reconstruction of the
input
WG:WIT

| Hidden Layer1' |
A

— T
W5—W2

\ Hidden Layer 2 \

W=w’ o ,
4 Stochastic binary units

Code Layer extract

n-bit semantic encodings

W3

\ Hidden Layer 2 \

B

| Hidden Layer1 |

Bag-of-words
representation of
frames/targets

Fig. 8. The fine-tuning phase of the deep autoencoder. The autoencoder unrolled such that W;" corresponds to the transpose of the W; weight
matrix of the RBM pairs in the pretraining phase. At the output layer, O is the reconstruction of the normalized BoW representation of the input
I; by using the softmax function. Stochastic binary units are used to enforce binary encodings at the code layer. The network is fine-tuned by using
the backpropagation algorithm with the cross-entropy loss function.

where v is the activation of the visible layer. Therefore during pretraining, unnormalized BoW vectors are used as
the input when the activations of the hidden layer are computed. The softmax activation function is used for the re-
construction of the input and multiplied by the total number of frames or targets in the input. The other RBMs use
only binary units at both layers, therefore the probability of the jti node in the hidden layer to have a value of 1 is
given by Equation 13. The probability of the ith node in the visible layer to have a value of 1 is given as:

p(vi =1|h)=6(bvi +2w,.hjj (14)

The network is pretrained by using the single-step contrastive divergence CD; (Hinton, 2002).

In the second phase, the network is unrolled as shown in Fig. 8. Here, W;' corresponds to the transpose of the W;
weight matrix and only used for initialization. The output layer uses the softmax function and reconstructs the nor-
malized BoW input vector, the code layer uses stochastic binary units and its state is defined by Equation 10, the other
hidden layers use the sigmoid activation function. Therefore the output is given by Equation 15 by using the state of
the code layer at time ¢, st, that is given in Equation 10.

Ot =O£(W60'(W50'(W4Stt +b5)+b6)+b7) (15)

where Oy is the output of the autoencoder at time 7, W; are the weights between layers i and i + 1, and b is the biases
of the layer i. The backpropagation algorithm is used to fine-tune the weights by using the reconstruction error at the
output layer. The error function is the cross-entropy between the input I and the output O that is given by Equation
16, where n is the dimension of I and O.

E(L,0)=-Y1,0g(0,) (16)

12 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

During the fine-tuning phase at the code layer, the state values given in Equation 11 is used for the forward-pass.
However, when backpropagating the errors, the actual activation values that are computed by Equation 9 are used.

3.3. Training SELMs

The training of SELMs are performed at two steps. The first step is the semantic feature extraction step that is
described before. After the features are extracted, the training of the SELM is performed by first randomizing the
training data. Then the current word, hash functions of n-gram histories, and the semantic feature that is extracted for
that utterance is fed into the network. The weights and biases of the neural network are learned by using backpropagation
through time (BPTT) algorithm, i.e., by unrolling the network for a number of time-steps back (Bodén, 2002). The
cross entropy is used as the error function. The network state is reset after the training is done for an utterance. There-
fore, SELMs are trained independently for each sentence. The learning rate is adjusted by using the gain on the de-
velopment set and early stopping is performed to avoid overfitting.

4. Experimental setting

We assess the performance of SELMs by performing re-scoring experiments on two different settings. The first
corpus we have used is the Wall Street Journal (WSJ) read-speech corpus (Paul and Baker, 1992). WSJ corpus is a
publicly available speech corpus that is designed for the speech recognition task. The corpus consists of read articles
from Wall Street Journal. Since it is read speech the performance of ASR is expected to be good. Also the domain of
the utterance is generic, because it contains news articles. The second corpus we have used is the LUNA spoken di-
alogue corpus (Dinarelli et al., 2009). The LUNA corpus consists of human—human Italian spoken conversations between
customers and operators in a help-desk call center. The two corpora are very different in terms of speaking styles,
recording conditions, and lexica. For this reason they provide a very good performance benchmark for the automatic
speech recognition and understanding tasks.

The performance of SELMs is assessed by the re-scoring framework that is depicted in Fig. 9. In this framework
each test utterance is fed into the ASR system. The ASR system outputs an n-best list of hypotheses as well as the
Ist-best hypothesis. The 1st-best hypothesis is passed to the semantic parser. The output of the semantic parser is used
by the feature extraction step which either extracts low-level features (Semantic Context Encodings) or high-level fea-
tures (Deep Semantic Encodings). These features are used as the semantic context for that utterance. The n-best list
(100-best in this paper) is re-scored by the SELM that uses the semantic features, and the best hypothesis of the SELM
is found.

The evaluation of the performance is done by considering the recognition and understanding requirements of spoken
language systems. The recognition performance is reported on WER for WSJ since we only have reference transcrip-
tions for this corpus. However, for LUNA we report WER and TER for the recognition performance. For the under-
standing task on LUNA we report the accuracy on the frame identification by using the Fl-score. TER is important
in measuring the potential understanding performance of the systems by measuring the recognition performance on
the main meaning bearing elements of semantic frames. TER can be used as a proxy for the understanding perfor-
mance because target words are the main meaning bearing elements of semantic frames and the accuracy of frame
identification depends on how accurately targets are detected.

Test N-Best List
Utterance ASR

k)
ol
NS Hypothesis
» <3 4
T Semantic

Features

. Semantic .
Parse Feature Extraction

Fig. 9. The re-scoring framework. The ASR 1st-best hypothesis is given to the semantic parser. The semantic features extracted by using the se-
mantic parse. The n-best hypotheses are re-scored by using the SELM that uses these semantic features for that utterance.

A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22 13

5. Wall Street Journal experiments

We have performed n-best re-scoring experiments on Wall Street Journal (WSJ) speech recognition corpus to assess
the performance of these models on WER. WSJ experiments are conducted on the publicly available WSJO/WSJ1
(DARPA November’92 and November’93 Benchmark) sets. We have used the following split as development and eval-
uation sets. All the development data under WSJ1 for speaker independent 20K vocabulary are used as the develop-
ment set (“Dev93” - 503 utterances). The evaluation is done on the November 92 CSR Speaker independent 20k NVP
test set (“Test92” - 333 utterances) and on the November 93 CSR HUB 1 test set (“Test93” - 213 utterances). The
vocabulary is the 20K open vocabulary word list for non-verbalized punctuation that is available in WSJO/WSJ1 corpus.
The data that are used for LM training are the whole WSJ 87, 88, and 89 sets.

5.1. ASR baselines

The baseline ASR system is built by using the Kaldi (Povey et al., 2011) speech recognition toolkit. The language
model that the baseline system uses is the baseline tri-gram back-off model for 20K open vocabulary for non-
verbalized punctuation that is also available in the corpus.

The acoustic models are trained over the SI-284 data by using the publicly available Kaldi recipe with the follow-
ing settings. MFCC features are extracted and spliced in time with a context window of [-3, +3]. Linear discriminant
analysis (LDA) and maximum likelihood linear transform (MLLT) are applied. Tri-phone Gaussian mixture models
are trained over these features. We have not used advanced acoustic models since we would like to test our approach
under high WER condition and address the effect of ASR noise on semantic information. Also our main purpose is to
compare the performance of SELMs with RNNME:s.

The ASR baseline performs weighted finite state decoding. We have extracted 100-best lists for the development
and each evaluation set. WER and TER performance of the ASR and the oracle hypotheses are given in Table 1. The
oracle hypotheses are the hypotheses that give the lowest WER on the 100-best list.

The semantic frames and targets are extracted by using the semantic-frame parser SEMAFOR (Das et al., 2014).
WSIJ speech recognition corpus has 841 distinct frames and 29043 distinct targets on the LM training data. SEMAFOR
recognizes around 40% of the tokens as targets for WSJ corpus.

5.2. Low-level semantic features

This section presents the experiments when low-level semantic features are used for the semantic context. We present
two different sets of features; the first one is based on frames that are evoked in the utterance and the second one
target words of the utterance. The feature extraction process is performed as given in Section 3.1.

The frame and target vocabulary for the WSJ corpus is 841 and 29043 respectively. To reduce the computational
complexity of the SELMs, we have used the frames and targets that cover the 80% of the corpus. With 80%
coverage, frame vocabulary becomes 184 and target vocabulary becomes 1184. We train two different SELMs; one
uses frame features and the other one uses target features that are constructed on the 80% coverage vocabulary. The
semantic features are extracted from the ASR hypothesis; however, to show the potential performance of SELMs we
have also extracted features by using the reference transcriptions. We present the results both for the features from
the ASR hypothesis (ASR Frames/Targets) and for the features from the reference transcription (Ref Frames/
Targets). To compare the performance of SELMs, we have also trained a Kneser-Ney smoothed 5-gram LM (KN5)
and an RNNME LM on the same data. The SELMs and the RNNME LM use 200 hidden units and are class-based
models over 200 word classes that are determined with respect to the unigram occurrences of the words. They use up
to 4-gram maximum entropy features by using 10° connections. The results are given in Table 2. As can be seen

Table 1
The WER(%) performance of the ASR baseline system on Test92 and Test93 sets.

Test92 Test93
ASR lst-best 10.2 14.0

Oracle on 100-best 5.1 7.3

14 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

Table 2
The WER(%) performance on the re-scored 100-best lists.
Model Test92 Test93
KNS5 9.7 13.3
RNNME 8.8 12.7
SELM on frames
ASR frames 9.2 13.6
Ref frames 8.5 12.5
SELM on targets
ASR targets 9.6 13.7
Ref targets 7.9 11.3

KNS5 is a Kneser—Ney 5-gram LM with singleton cut-offs. RNNME and SELMs are class-based
models with 200 word classes. The actual performance of SELMs are given in bold, the results
with Ref frames/targets show the possible lower bound.

13.9
----- RNNME

13.8t| — SELM - ASR Frames.
- - SELM - Ref Frames.

Word Error Rate (%)

13.0

. . .
0 5 8 10 12 15 20
Pruning Error Rate (%)

Fig. 10. The WER performance of SELM on frames on the Dev93 set with different pruning error rates.

SELMs have high potential when the correct semantic information is used (Ref Frames/Targets); however, the noise
that is present in the ASR hypothesis drops their performance significantly beyond the RNNME LM.

Noise reduction can be performed by using the semantic information that is more accurate. Since frames are more
robust to ASR noise we perform error pruning only on the frames for WSJ. For this purpose, we use Dev93 set and
align the output of the semantic parser on the ASR 1st-best hypothesis with the output of the semantic parser on the
reference transcription. We calculate the error rate of each frame by counting all the errors (substitutions, insertions,
deletions) that are made on each frame. We discard the frames that have error rates above a certain threshold when
extracting low-level semantic features for the training and the test sets. We train SELMs from scratch by using the
semantic contexts after error pruning. And we perform the re-scoring experiments once more. Fig. 10 shows the WER
on the development set with various pruning rates. It can be seen that, in general, as the threshold increases the WER
increases. We can also observe that the WER is the lowest with pruning error rates of 0% and 8%, which correspond
to 37 and 52 distinct frames in the semantic information.

The WER performance of SELMs with error pruning on the test set is given in Table 3. We present the perfor-
mance of two models, SELMs on frames with the error pruning threshold of 0%, and SELMs on frames with the
error pruning threshold of 8%. For Test92 set the model with 0% pruning threshold performs better; however, for
Test93 set both models perform the same. Although we have a slight improvement for Test92 set with SELMs, we
cannot achieve any improvement for Test93.

A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22 15

Table 3
The WER(%) performance after error pruning.
Model Test92 Test93
KNS5 9.7 13.3
RNNME 8.8 12.7
SELM frames err. = 0%
ASR frames 8.7 12.7
Ref frames 8.7 12.7
SELM frames err. = 8%
ASR frames 8.9 12.7
Ref frames 8.8 12.5

The actual performance of SELMs are given in bold, the results with Ref frames show the possible
lower bound.

5.3. Deep semantic encodings

Error pruning on low-level semantic features helps to improve WER for Test92. The performance of error pruning
depends on the set where the pruned frames are selected and may not work well for the unseen data. Also, by pruning
erroneous frames, the whole linguistic scene cannot be employed in the language model. This section presents the
experiments performed by using deep semantic encodings, where the whole semantic information is encoded by using
deep autoencoders. In addition, the semantic encodings handle the noise of ASR frames and targets by encoding the
semantic information in a noisy way by using stochastic binary units.

The deep semantic encodings are constructed for the frames and targets separately. Therefore, we have two dif-
ferent sets of semantic encodings, one for the frames evoked and one for the targets that occur in the utterance. The
autoencoders are trained over the whole training data that are available for LM training, in addition, the development
set is used to avoid overfitting. To obtain the frames and targets for these data sets, the reference transcriptions are
passed through the SEMAFOR frame-semantic parser, and frames and targets are extracted. Then BoW vectors of
the frames and targets are created. Unsupervised pretraining is performed for 20 iterations with a mini-batch size of
100 over the BoW vectors of the frames and the targets on the training data. Then fine-tuning is performed by using
stochastic gradient descent over the training data also by considering the reconstruction error on the development set
to avoid overfitting by adjusting the learning rate and by “early stopping”.

Also for the deep semantic encodings we have used the most frequent frames and targets that cover around 80%
of the training data; 184 distinct frames and 1184 distinct targets. The semantic encodings for frames are constructed
by using deep autoencoders of size (184 —200 — 200 —n) and for targets (1184 — 400 —400 —n), where n denotes the
size of the binary semantic encoding.

To investigate the accuracy of the encodings of various sizes, we compare ASR encodings with reference encodings.
Semantic encodings are binary vectors; therefore we can use the Hamming distance between the ASR and the refer-
ence encodings to determine how accurate they are. Hamming distance measures at how many bits the two represen-
tations differ. On the development set we plot the histogram of Hamming distance between the ASR and the reference
encodings. Fig. 11 shows the histograms of frame and target encodings in the interval [1, 8].* We observe that in general,
as the size of the encodings increase the number of instances with a higher Hamming distance increase. For the frame
encodings, the sizes of 8-bits and 12-bits have a similar distribution which have a better performance of suppressing
the ASR noise. However, in particular, the sizes of 20-bits and 24-bits are very much affected by the ASR noise and
show high discrepancy between the ASR and the reference encodings. For the target encodings, the size of 8-bits has
the lowest error distribution and size of 24-bits has the highest error distribution. The others, sizes of 12-bits, 16-bits,
and 20-bits show almost a similar distribution. If both frame and target histograms are compared, target encodings
are expected to be more robust to ASR noise, since they have a better error distribution (when the same sizes of frame
and target encodings are compared with each other).

3 We do not present the full interval [0,24] for a clear visualization. The interval [1,8] covers the critical part of the distributions.

16 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

(a) Frame Encodings (b) Target Encodings
0% : : — 8-bits | 90F : — 8-bits |
ol % : : --- 12-bits|| g0l : --- 12-bits| |
\ ==+ 16-bits ==+ 16-bits
o 70N ' ‘ 20-bits|] 970 ‘ ; 20-bits |
£ 60/ 24-bits || S 60} 24-bits ||
= 50 = 50
o o
340 340
£ £
= 30 230
20 20
10 10
o 0

Hamming Distance Hamming Distance

Fig. 11. The histogram of Hamming distance between ASR encodings and reference encodings on the development set: (a) Frame Encodings, (b)
Target Encodings. The encodings of 8-bits and 12-bits have a better performance. Target encodings are more robust in general. The histogram is
shown for the Hamming distance in the interval [1, 8].

Table 4
The WER(%) performance of SELMs with deep semantic encodings.
Model Test92 Test93
KNS5 9.7 13.3
RNNME 8.8 12.7
SELM - frame enc.
8-bits 8.5 12.4
12-bits 8.6 13.0
16-bits 9.1 12.6
20-bits 8.5 12.5
24-bits 9.2 12.8
SELM - target enc.
8-bits 8.5 12.4
12-bits 8.5 12.4
16-bits 8.7 12.5
20-bits 9.0 12.7
24-bits 8.8 13.1

The best performing models for both test sets are given in bold.

The performance of the SELMs that are trained on deep semantic encodings are evaluated on WER performance.
The performance of these models are presented with the KNS5 and RNNME model for comparison. The WER per-
formance of these models are presented in Table 4.

We can see in Table 4 that the SELMs with 8-bits and 12-bits target encodings, and 8-bits and 20-bits frame encodings
always perform better than the RNNME. We also see that frame encodings are more noisy, because of the perfor-
mance differences between Test92 and Test93; but for target encodings the situation is more stable, the 8-bits and
12-bits target encodings perform consistently better than other sizes. This result is consistent with the error analysis
on the encodings, i.e., target encodings are more robust to noise.

5.4. Discussion

The re-scoring experiments on WSJ corpus show that SELMs can be optimized for WER jointly by using either
low-level semantic features or deep semantic encodings. We achieve a more stable improvement by using deep se-
mantic encodings compared to error pruning. Error pruning cannot utilize all the semantic context and most often
depends on the data that the error pruning is performed. Deep semantic encodings, on the other hand, utilize all the
available semantic information. We observe that target encodings are more robust.

A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22 17

6. LUNA HH experiments

This section presents the re-scoring experiments that are conducted on the Italian LUNA human—human conver-
sational speech corpus (LUNA HH). LUNA HH corpus consists of human—human spoken dialogs that are recorded
between a customer and an operator at a call center. Therefore, the corpus consists of domain specific dialogs. The
dialogs on LUNA HH corpus is annotated at multiple levels (Dinarelli et al., 2009). These levels include the word
level annotation and predicate argument annotation. The predicate argument annotation is based on the FrameNet model.
In addition, the dialogs are recorded on a single channel. Because of the nature of human—human conversations these
dialogs contain overlapped segments which are discarded. The number of dialogs in LUNA HH corpus is 415, 53, 84
for the training, the development and the test set respectively. The FrameNet annotations, which are used for the train-
ing of the semantic parser, are only available for 94, 11, 20 dialogs in the training, development and the test set. In
the experiments conducted on LUNA HH we have used the whole training and the development sets. However, for
reporting both the recognition and the understanding performance, the results are reported on the subset of the test
set that has semantic annotations. We will refer to this subset as the test set from now on. The statistics on LUNA
HH corpus is given in Table 5.

6.1. Semantic parsing on LUNA HH

The FrameNet annotation on LUNA HH corpus is domain specific, i.e., only the frames that are semantically rel-
evant to the domain are annotated (Dinarelli et al., 2009). Therefore, the LUNA semantic parser only extracts domain
specific target words and frames, whereas SEMAFOR parser extracts all of the target words and frames that are defined
under the FrameNet project. In this respect, the targets and frames are sparse for LUNA HH corpus. The frame vo-
cabulary is 203.

The LUNA semantic parser (Coppola et al., 2009) is mainly focused on frame element recognition and outputs
multiple hypotheses at the frame identification step. The frames are scored by using a very simple model. To improve
the frame identification performance of the LUNA semantic parser we have re-scored the multiple hypotheses by using
another semantic model that is trained by using conditional random fields (CRFs). The target identification and frame
identification performance of the semantic parser with re-scoring for the reference transcription of the test set is given
in Table 6.

6.2. ASR baseline

The ASR baseline for LUNA HH is constructed by using the Kaldi (Povey et al., 2011) speech recognition toolkit.
The ASR uses mel-frequency cepstral coefficients (MFCC) that are transformed by linear discriminant analysis (LDA)

Table 5
Statistics of the whole training split and the subset of the test set that has semantic annotations of
LUNA HH corpus.

Training Test
No. of utterances 14465 900
No. of tokens 116178 6273
Vocabulary size 6840 1287
OOV rate (%) - 3.5
Table 6

The target identification and frame identification performance of the LUNA semantic parser with
re-scoring on the transcriptions of the test set.

Precision (%) Recall (%) Fl-score (%)

Target identification 79.3 70.4 74.6
Frame identification 63.6 56.5 59.8

18 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

Table 7
The WER(%) and TER(%) performance of the baseline ASR on LUNA HH corpus.

WER(%) TER(%)
ASR 35.7 66.7
Oracle on 100-best 23.0 60.5

The oracle performance is given for 100-best lists.

Table 8
The target identification and frame identification accuracy of the ASR baseline on the test set of
LUNA HH corpus.

Precision (%) Recall (%) F1-score (%)
Target identification 60.3 50.9 55.2
Frame identification 50.4 44.0 47.0
Table 9

The WER(%) performance of the re-scoring experiments on LUNA HH corpus by using the SELMs
that are trained over frames and targets.

WER(%) TER(%)

RNNME 34.6 66.7
SELM on frames

ASR frames 35.5 66.4

Ref frames 34.6 64.4
SELM on targets

ASR targets 35.1 67.0

Ref targets 34.0 61.4

The actual performance of SELMs are given in bold, the results with Ref frames/targets show the
possible lower bound.

and maximum likelihood linear transform (MLLT). These features are then spliced in the window of [-3, +3]. The
acoustic models are trained by advance training approaches such as “speaker adaptive training”. The speaker adap-
tation during decoding is performed by feature-space maximum likelihood linear regression (fMLLR) (Leggetter and
Woodland, 1995). The LM for the ASR is a modified Kneser—Ney tri-gram model that is built over the training data.
The ASR and the oracle WER performances on the 100-best list is given in Table 7. Because of the nature of the corpus,
i.e., human—human conversations over the telephone, the corpus is very noisy and has a high WER.

We present the performance of the ASR baseline on frame accuracy and target accuracy by using the Italian LUNA
semantic-frame parser (Coppola et al., 2009). The semantic parser recognizes around 10% of the tokens as targets;
therefore the targets for LUNA are more sparse than WSJ. The target recognition and frame identification accuracy is
given in Table 8. The high WER on LUNA HH also affects the semantic parsing performance; therefore, we have
very low accuracy on the ASR hypothesis.

6.3. Re-scoring experiments

The re-scoring experiments are performed by using the same setting as the WSJ experiments. Therefore, 100-best
lists are re-scored by using SELMs trained over the frames and the targets that are extracted by using the LUNA frame-
semantic parser. We have removed the frames and targets that just occur once in the training data. Thus we have used
151 distinct frames and 536 distinct targets. The SELMs use a hidden layer of size 100 and use up to 3-gram maximum
entropy features that are implemented by 10° connections. Since the vocabulary size is small, no word classes are
used. In addition, an RNNME model is trained with the same settings. All neural network models are initialized with
the same random weights. The results of the re-scoring experiments are given in Table 9. In this table, “ASR Frames/
Targets” means that we have given the ASR Ist-best hypothesis to the semantic parser, and “Ref Frames/Targets” means
that we have given the reference transcription to the semantic parser. As in the WSJ experiments, the actual perfor-
mance is reported with “ASR Frames/Targets”. “Ref Frames/Targets” shows a lower bound to WER.

We observe a similar situation for LUNA. When the accurate semantic information (Ref Frames/Targets) is used,
the SELMs have a significant improvement on WER. However, although the SELMs with “ASR Frames” perform

A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22 19

Table 10
The WER(%) and TER(%) performance with error pruning at 0%, 20%, and 40% on LUNA HH.
WER(%) TER(%)
RNNME 34.6 66.7
SELM on frames — err. = 0% (15 frames)
ASR frames 34.7 66.1
Ref frames 34.7 66.1
SELM on frames — err. = 20% (24 frames)
ASR frames 35.1 66.4
Ref frames 35.0 66.3
SELM on frames — err. = 40% (47 frames)
ASR frames 36.1 66.9
Ref frames 359 65.9
SELM on targets — err. = 0% (20 targets)
ASR targets 35.0 65.5
Ref targets 35.0 65.5
SELM on targets — err. = 20% (47 targets)
ASR targets 35.0 66.4
Ref targets 35.0 66.7
SELM on targets — err. = 40% (173 targets)
ASR targets 34.9 67.1
Ref targets 34.8 65.1

The number of distinct frames and targets with the corresponding thresholds are given in paren-
thesis. The actual performance of SELMs are given in bold, the results with Ref frames/targets
show the possible lower bound.

better than the ASR baseline, it fails to outperform the RNNME model. Therefore, we apply the error pruning meth-
odology and prune erroneous targets and frames.

6.4. Error pruning

We perform error pruning on the training data by measuring the target and frame errors that are present in the ASR
hypotheses with respect to the reference transcription. Therefore, as done for WSJ, we have aligned the output of the
semantic parser (both on targets and frames) for the ASR hypothesis with the reference transcription. All the errors
are computed (substitutions, insertions, and deletions) for each target and frame. The targets and frames which have
errors more than a threshold are discarded from all the semantic context (both for the train and test sets). The thresh-
olds for pruning are 0%, 20%, and 40%. The SELMs are trained from scratch and re-scoring experiments are per-
formed once more. The performance of SELMs are presented in Table 10.

The results show that error pruning improves the results compared to training with all the semantic features. We
observe that as we add targets and frames that have errors, the performance has a tendency to drop. The best perfor-
mance is obtained by using the frames and targets that do not have any errors. In terms of WER, the SELMs trained
for LUNA HH corpus have a lower performance compared to RNNME. However, we achieve a lower TER for SELMs
with error pruning up to 20%. Therefore, although the high WER on the ASR hypothesis prevents SELMs to be trained
effectively, they still have a better performance on the meaning bearing elements.

6.5. Understanding performance

We present the understanding performance of the SELMs by performing a detailed analysis on TER and frame
identification accuracy. We perform this detailed analysis with the RNNME model, the SELM on frames with error
pruning at 0%, the SELM on targets with error pruning at 0%, and the linear interpolation of these two SELMs with
equal weights. The detailed analysis of TER and frame identification accuracy is given in Fig. 12.

In terms of TER we achieve a better performance with all of the SELMs at every coverage of target words com-
pared to RNNME. In addition, we observe that the SELMs on targets perform the best. We also observe that the per-
formance gain is greater for the target words that occur more frequently. On the frame identification, we observe that

20 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

(a) Target Recognition (b) Frame ldentification

73.0 — RNNME - WER: 34.6% 58.0¢ — RNNME - WER: 34.6%
72.5 (1) SELM Frame - WER: 34.7% |1 5750 (1) SELM Frame - WER: 34.7% ||
72.0 -- (2) SELM Target - WER: 35.0% || 22(5%\‘ -~ (2) SELM Target - WER: 35.0% ||
S T N (1) + (2) Lin. Int.- WER: 34.9% | | ceol Sow L (1) + (2) Lin. Int.- WER: 34.9%] |
71.0 55.50
=705 55.0
s ;g.o 54.5
g 7008, £ 54.0
o 69.5K *;J 53.5
S 69.0 & 53.0
' 68.5 % 52.5
+ —
© T 52.0
2 68'2 51.5
£ 675 51.0
67.0 50.5
66.5 50.0
66.0 S 49.5
. 49.0
65. 48.5
65.0 1 48.0 3
0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0

Target Word Coverage Frame Coverage

Fig. 12. Target recognition (TER) and frame identification (F1-score) performance at different coverages of target words and frames for LUNA
HH: (a) target recognition, (b) frame identification.

SELMs on frames perform worse than RNNME up to 80% coverage, and for the full coverage it performs slightly
better than RNNME. SELMs on targets, on the other hand, outperform RNNMEs.

6.6. Discussion

The experiments on LUNA HH, which is a domain specific conversational corpus, have a noisy setting. The ASR
Ist-best performance is very noisy in terms of recognition and the understanding performance. In addition, the se-
mantic frame annotation only includes domain specific frames which lead to sparsity of the semantic information.

The sparse semantic information and the small size of LUNA HH prevents us to train deep semantic encodings.
Therefore, we have only presented the SELMs with low-level semantic features. Under these conditions, we observe
that SELMs fail to outperform RNNMEs on WER; however, they achieve better performance in terms of TER and
frame identification accuracy. The SELM on targets has the best performance for both TER and frame identification
accuracy.

7. Conclusion

In this paper we have presented SELMs that integrate semantic constraints into language modeling by using the
theory of frame semantics. SELMs incorporate semantic features into LMs and enable them to be optimized with respect
to lexical and semantic constraints jointly.

We have performed re-scoring experiments on WSJ and LUNA HH to assess the performance of SELMs. The per-
formance is evaluated on WER for WSJ corpus and on WER, TER, and frame identification accuracy for LUNA HH
corpus. We have used two different types of semantic features: low-level features which are extracted directly from
the output of the semantic parser and high-level features (deep semantic encodings) which are extracted by using deep
autoencoders. Low-level features are affected by the noise in the ASR hypothesis, and they can only be employed
after erroneous frames and targets are pruned. Deep semantic encodings, on the other hand, suppress the ASR noise
by smoothing the encodings. Deep semantic encodings are more robust and they outperform low-level features on
WER for WSIJ. On the other hand, low-level features may not be optimized for WER; however, they still perform
well for the understanding performance.

The experiments are performed on two different settings with low ASR noise and dense (in terms of triggered frames
per token) semantic features (WSJ), and high ASR noise and sparse semantic features (LUNA HH). We observe that
in the case where the ASR noise is low and the semantic features are dense, SELMs can be optimized better with
respect to WER. The high ASR noise prevents SELMs to be optimized for WER; however, they still outperform RNNMEs
on the understanding performance.

A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22 21

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement No. 610916 — SENSEI

References

Bayer, A.O., Riccardi, G., 2014. Semantic language models for automatic speech recognition. In: Spoken Language Technology Workshop (SLT),
2014 IEEE. IEEE, pp. 7-12.

Bayer, A.O., Riccardi, G., 2015. Deep semantic encodings for language modeling. In: Interspeech 2015, 16th Annual Conference of the Interna-
tional Speech Communication Association, pp. 1448—1452.

Bellegarda, J., 2000a. Exploiting latent semantic information in statistical language modeling. P. IEEE 88 (8), 1279-1296.

Bellegarda, J., 2000b. Large vocabulary speech recognition with multispan statistical language models. IEEE Trans. Speech Audio Process. 8 (1),
76-84.

Bengio, Y., Ducharme, R., Vincent, P., Janvin, C., 2003. A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137-1155.

Berry, M.W., Dumais, S., O’Brien, G., 1995. Using linear algebra for intelligent information retrieval. SIAM Rev. 37, 573-595.

Bodén, M., 2002. A guide to recurrent neural networks and backpropagation. In: In the Dallas project, SICS Technical Report T2002:03, SICS.

Chelba, C., Bikel, D., Shugrina, M., Nguyen, P., Kumar, S., 2012. Large scale language modeling in automatic speech recognition. Tech. rep.,
Google.

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., 2013. One billion word benchmark for measuring progress in statistical lan-
guage modeling. CoRR abs/1312.3005. <http://arxiv.org/abs/1312.3005> (accessed 03.15).

Coppola, B., Moschitti, A., Riccardi, G., 2009. Shallow semantic parsing for spoken language understanding. In: Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Compan-
ion Volume: Short Papers. NAACL-Short "09. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 85-88.

Das, D., Chen, D., Martins, A.E.T., Schneider, N., Smith, N., 2014. Frame-semantic parsing. Computational Linguistics 40 (1), 9-56.

Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R., 1990. Indexing by latent semantic analysis. J. Am Soc. Inf. Sci. 41
(6), 391-407.

Deoras, A., Tur, G., Sarikaya, R., Hakkani-Tur, D., 2013. Joint discriminative decoding of words and semantic tags for spoken language under-
standing. IEEE Trans. Audio Speech Lang. Process. 21 (8), 1612-1621.

Dinarelli, M., Quarteroni, S., Tonelli, S., Moschitti, A., Riccardi, G., 2009. Annotating spoken dialogs: from speech segments to dialog acts and
frame semantics. In: Proceedings of SRSL 2009 Workshop of EACL. Athens, Greece.

Fillmore, C.J., 1976. Frame semantics and the nature of language. Ann. N. Y. Acad. Sci. 280 (1), 20-32.

Fillmore, C.J., Johnson, C.R., Petruck, M.R.L., 2003. Background to Framenet. Int. J. Lexicogr. 16 (3), 235-250.

Gildea, D., Hofmann, T., 1999. Topic-based language models using EM. In: Proceedings of the 6th European Conference on Speech Communi-
cation and Technology (EUROSPEECH-99). Budapest, pp. 2167-2170.

Hinton, G.E., 2002. Training products of experts by minimizing contrastive divergence. Neural Comput. 14 (8), 1771-1800.

Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science 313 (5786), 504-507.

Hinton, G.E., Osindero, S., Teh, Y.W., 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18 (7), 1527-1554.

Leggetter, C.J., Woodland, P.C., 1995. Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models.
Comput. Speech Lang. 9 (2), 171-185.

Marcus, M.P., Santorini, B., Marcinkiewicz, M.A., 1993. Building a large annotated corpus of English: The Penn Treebank. Comput. Ling. 19 (2),
313-330.

Mikolov, T., 2012. Statistical language models based on neural networks. (Ph.D. thesis), Brno University of Technology.

Mikolov, T., Zweig, G., 2012. Context dependent recurrent neural network language model. In: Proceedings of SLT. IEEE, pp. 234-239.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., Khudanpur, S., 2010. Recurrent neural network based language model. In: Interspeech 2010,
11th Annual Conference of the International Speech Communication Association, pp. 1045-1048.

Mikolov, T., Deoras, A., Kombrink, S., Burget, L., Cernocky, J., 2011a . Empirical evaluation and combination of advanced language modeling
techniques. In: Interspeech 2011, 12th Annual Conference of the International Speech Communication Association, pp. 605-608.

Mikolov, T., Deoras, A., Povey, D., Burget, L., Cernocky, J., 2011b. Strategies for training large scale neural network language models. In: Pro-
ceedings of ASRU. IEEE, pp. 196-201.

Mikolov, T., Kombrink, S., Burget, L., Cernocky, J., Khudanpur, S., 2011c. Extensions of recurrent neural network language model. In: Proceed-
ings of ICASSP. IEEE, pp. 5528-5531.

Paul, D.B., Baker, J.M., 1992. The design for the Wall Street Journal-based CSR corpus. In: Proceedings of the Workshop on Speech and Natural
Language. HLT *91. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 357-362.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., et al., 2011. The Kaldi speech recognition toolkit. In: Proceedings of
ASRU. IEEE.

Riccardi, G., Gorin, A.L., 1998. Stochastic language models for speech recognition and understanding. In: ICSLP, Sydney, Nov. 1998.

Rosenfeld, R., 1996. A maximum entropy approach to adaptive statistical language modeling. Comput. Speech Lang. 10, 187-228.

Salakhutdinov, R., Hinton, G., 2009. Semantic hashing. Int. J. Approx. Reason. 50 (7), 969-978.

Schwartz, R.M., Imai, T., Kubala, F., Nguyen, L., Makhoul, J., 1997. A maximum likelihood model for topic classification of broadcast news. In:
Proceedings of EUROSPEECH. ISCA.

http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0010
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0010
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0015
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0015
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0020
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0025
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0025
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0030
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0035
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0040
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0045
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0045
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0050
http://arxiv.org/abs/1312.3005
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0055
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0055
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0055
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0060
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0065
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0065
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0070
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0070
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0075
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0075
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0080
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0085
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0090
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0090
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0095
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0100
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0105
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0110
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0110
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0115
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0115
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0120
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0125
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0130
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0130
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0135
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0135
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0140
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0140
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0145
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0145
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0150
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0150
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0155
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0155
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0160
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0165
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0170
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0175
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0175

22 A.O. Bayer, G. Riccardi/Computer Speech and Language 40 (2016) 1-22

Schwenk, H., 2007. Continuous space language models. Comput. Speech Lang. 21 (3), 492-518.

Tonelli, S., Riccardi, G., 2010. Guidelines for annotating the LUNA corpus with frame information. In: Technical Report DISI-10-017, University
of Trento.

Wang, Y.-Y., Acero, A., Chelba, C., 2003. Is word error rate a good indicator for spoken language understanding accuracy? In: Automatic Speech
Recognition and Understanding, 2003. ASRU ’03. 2003 IEEE Workshop on, pp. 577-582.

http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0180
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0185
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0185
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0190
http://refhub.elsevier.com/S0885-2308(15)30030-9/sr0190

	 Semantic language models with deep neural networks
	 Introduction
	 Semantic language models
	 Frame semantics
	 Model structure
	 RNN language models
	 SELM structure

	 Semantic feature extraction
	 Semantic context encodings
	 Deep semantic encodings
	 Training deep autoencoders

	 Training SELMs

	 Experimental setting
	 Wall Street Journal experiments
	 ASR baselines
	 Low-level semantic features
	 Deep semantic encodings
	 Discussion

	 LUNA HH experiments
	 Semantic parsing on LUNA HH
	 ASR baseline
	 Re-scoring experiments
	 Error pruning
	 Understanding performance
	 Discussion

	 Conclusion
	 Acknowledgements
	 References

