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Abstract

Penn Discourse Treebank style discourse
parsing is a composite task of detecting ex-
plicit and non-explicit discourse relations,
their connective and argument spans, and
assigning a sense to these relations. Due
to the composite nature of the task, the
end-to-end performance is greatly affected
by the error propagation. This paper de-
scribes the end-to-end discourse parser for
English submitted to the CoNLL 2016
Shared Task on Shallow Discourse Pars-
ing with the main focus of the parser be-
ing on argument spans and the reduction
of global error through model selection. In
the end-to-end closed-track evaluation the
parser achieves F-measure of 0.2510 out-
performing the best system of the previous
year.

1 Introduction

Discourse parsing is a Natural Language Process-
ing (NLP) task with the potential utility for many
other Natural Language Processing tasks (Web-
ber et al., 2011). However, as was illustrated by
the CoNLL 2015 Shared Task on Shallow Dis-
course Parsing (Xue et al., 2015), the task of Penn
Discourse Treebank (PDTB) (Prasad et al., 2008)
style discourse parsing is very challenging as the
best system achieved the end-to-end parsing per-
formance of F

1

= 0.24. The main reason for the
low performance is the composite nature of the
task and the error propagation through the long
pipeline.

In PDTB discourse relations are binary: a dis-
course connective and its two arguments. The ar-
guments are defined syntactically such that Argu-
ment 2 is syntactically attached to the connective,
and Argument 1 is the other argument. A discourse

relation is assigned a particular sense from the pre-
defined sense hierarchy. Discourse connective, a
member of the closed class, signals the presence
of an explicit relation. Besides explicit discourse
relations there are non-explicit relations: implicit
relations where a connective is implied and can
be inserted, alternative lexicalizations (AltLex)
where a connective cannot be inserted and a re-
lation is signaled by a phrase not in the list of dis-
course connectives, and entity relations (EntRel)
where two arguments share the same entity.

Such definition of discourse relations naturally
suggests at least two pipelines for the parsing:
for explicit and non-explicit relations. Moreover,
since in PDTB non-explicit relations are annotated
only in the absence of explicit relations, explicit
relation parsing pipeline precedes the non-explicit
one. While detection of discourse connectives is
only required for the explicit relations, for both re-
lation types parsing requires identification of ar-
gument spans and relation senses. Consequently,
PDTB-style discourse parsing is partitioned into
several sub-tasks: (1) explicit discourse connec-
tive detection, (2) argument span extraction (with
labeling for Argument 1 and 2), and (3) sense clas-
sification. The tasks are often conditioned on the
type of a relation (explicit or non-explicit) and ar-
gument positions (intra- or inter-sentential).

In this paper we describe the end-to-end dis-
course parser submitted to CoNLL 2016 Shared
Task on Shallow Discourse Parsing (Xue et al.,
2016). The parser makes use of token-level se-
quence labeling with Conditional Random Fields
(Lafferty et al., 2001) for the identification of con-
nective and argument spans; and classification for
the identification of relation senses and argument
positions. The main focus of the parser is on ar-
gument spans. For the end-to-end parsing task the
models are selected with respect to the global pars-
ing score.
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The overall parser architecture is described in
Section 1. The token-level features used for se-
quence labeling and argument and relation-level
features used for sense classification are described
in Section 3. The individual discourse parsing sub-
tasks are described in Section 4. Section 5 de-
scribes the official CoNLL 2016 Shared Task eval-
uation results, and in Section 6 we compare the
system to the best systems of the preceding shared
task on discourse parsing (Xue et al., 2015). Sec-
tion 7 provides concluding remarks.

2 System Architecture

The discourse parser submitted for the CoNLL
2016 Shared Task is the modified version of the
parser developed by (Stepanov et al., 2015) for the
shared task of 2015. The system is an extension of
the explicit relation parser described in (Stepanov
and Riccardi, 2013; Stepanov and Riccardi, 2014).
The overall architecture of the parser is depicted
in Figure 1. The approach implements discourse
parsing as a pipeline of several tasks such that con-
nective and argument span decisions are cast as
sequence labeling and sense decisions as classifi-
cation.

The discourse parsing pipelines starts with the
identification of discourse connectives and their
spans (Discourse Connective Detection (DCD)),
and is followed by Connective Sense Classifica-
tion (CSC) and Argument Position Classification
(APC) steps. While CSC assigns sense to explicit
discourse relations, APC classifies them as intra-
and inter-sentential (Same Sentence (SS) and Pre-
vious Sentence (PS) Argument 1). Both tasks op-
erate using the connective span tokens only.

With respect to the decision of the Argument Po-
sition Classification the pipeline is split into ex-
plicit and non-explicit tasks. For the explicit re-
lations, specific Argument Span Extraction (ASE)
models are applied for each of the arguments with
respect to their begin intra- or inter-sentential.
Since Argument 2 is syntactically attached to the
discourse connective, its identification is easier.
Thus, for the intra-sentential (SS) relations, mod-
els are applied in a cascade such that the output
of Argument 2 span extraction in the input for Ar-
gument 1 span extraction. For the inter-sentential
(PS) relations, on the other hand, a sentence con-
taining the connective is selected as Argument 2,
and the sentence immediately preceding it as a
candidate for Argument 1.

For non-explicit discourse relations, a set of
candidate argument pairs is constructed using ad-
jacent sentence pairs within a paragraph and re-
moving all the sentence pair already identified as
inter-sentential explicit relations. Each of these
argument pairs is assigned a sense using Non-
Explicit Relation Sense Classification (NE-RSC)
models and their argument spans are extracted us-
ing Non-Explicit Argument Span Extraction step.

In the discourse parser, the Non-Explicit Rela-
tion Sense Classification, Connective Sense Clas-
sification, and Argument Position Classification
tasks are cast as supervised classification using
AdaBoost algorithm (Freund and Schapire, 1997)
implemented in icsiboost (Favre et al., 2007). The
span extraction tasks (Discourse Connective De-
tection and explicit and non-explicit Argument
Span Extraction), on the other hand, are cast as
token-level sequence labeling with CRFs (Lafferty
et al., 2001) using CRF++ (Kudo, 2013). Be-
sides training the CRF models for ASE, for inter-
sentential Argument 1 span and both non-explicit
argument spans, we also make use of the ‘heuris-
tics’: taking an argument sentence as a whole and
removing leading and trailing punctuation (Lin et
al., 2014; Stepanov et al., 2015). In the next sec-
tion we describe the features used for the tasks.

3 Features

The PDTB corpus distributed to the shared task
participants contains raw text and syntactic con-
stituency and dependency parses. Besides the to-
ken and part-of-speech tags, these resources are
used to extract and generate both token-level and
argument/relation-level features. Additionally, for
argument/relation-level features for Non-Explicit
Relation Sense Classification we make use of
Brown Clusters (Turian et al., 2010), MPQA sub-
jectivity lexicon (Wilson et al., 2005) and VerbNet
(Kipper et al., 2008). The feature sets for each
task are selected using greedy hill climbing ap-
proach, also considering the amount of contribu-
tion of each individual feature.

3.1 Token-level Features

All the discourse parsing sub-tasks (both classifi-
cation and sequence labeling) except Non-Explicit
Relation Sense Classification make use of token-
level features. However, the feature sets for each
task are different. Table 1 gives an overview of
feature sets per task. Besides tokens and POS-
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Figure 1: Discourse parsing architecture: the sequence labeling modules are in bold and the classification
modules are in italics.

tags, the rest of the features are described below.
Chunk-tag is the syntactic chunk prefixed with

the information whether a token is at the begin-
ning (B-), inside (I-) or outside (O) of the con-
stituent (i.e. IOB format) (e.g. ‘B-NP’ indicates
that a token is at the beginning of Noun Phrase
chunk). The information is extracted from con-
stituency parse trees using chunklink script (Buch-
holz, 2000).

IOB-chain is the path string of the syntactic tree
nodes from the root node to the token, similar to
Chunk-tag, it is prefixed with the IOB informa-
tion. For example, the IOB-chain ‘I-S/B-VP’ in-
dicates that a token is the first word of the verb
phrase (B-VP) of the main clause (I-S).The feature
is also extracted using the chunklink script (Buch-
holz, 2000).

Dependency chain (Stepanov et al., 2015) is
a feature inspired by IOB-chain and is the path
string of the functions of the parents of a token,
starting from the root of a dependency parse.

VerbNet Class (Kipper et al., 2008) is a feature
intended to capture attributions. The feature re-
quires lemmas, which were extracted using Tree-
Tagger (Schmid, 1995).

Connective Label and Argument 2 Label are the
output labels of the Discourse Connective Detec-
tion and Argument 2 Span Extraction models re-
spectively.

Using templates of CRF++ the token-level fea-
tures are enriched with ngrams (2 & 3-grams) in
the window of±2 tokens, such that for each token
there are 12 features per feature type: 5 unigrams,
4 bigrams and 3 trigrams. All features are condi-

tioned on the output label independently of each
other. Additionally, CRFs consider the previous
token’s output label as a feature.

3.2 Argument and Relation-level Features

In this section we describe the features used for
Non-Explicit Relation Sense Classification. Previ-
ous work on the task makes use of a wide range of
features; however, due to the low state-of-the-art
on the task, we focused on the features obtainable
from the provided resources: sentiment polarities
from MPQA lexicon (Wilson et al., 2005), Brown
Clusters (Turian et al., 2010), and VerbNet (Kipper
et al., 2008). Similar to VerbNet Class feature, de-
scribed above, lemmas from TreeTagger (Schmid,
1995) are used to compute the polarity features.

There are four features generated for Polar-
ity: (1-2) Individual argument polarities com-
puted from token-level polarities as a difference
of counts of positive and negative polarity words.
The feature is assigned either ‘negative’ or ‘posi-
tive’ value with respect to the difference. (3) The
concatenation of the argument polarity values (e.g.
negative-positive). (4) The boolean feature indi-
cating whether the argument polarities match.

The Brown Cluster and VerbNet features are ex-
tracted only for specific tokens. Starting from the
dependency parse trees of the arguments we ex-
tract the main verb (root), subject (including pas-
sive), direct and indirect objects for each of them.
Since for extracting VerbNet features we make use
of lemmas, the lemmas themselves are considered
for classification as well. Similar to polarity, the
VerbNet features (4) are main-verbs’ classes of the

87



Feature DCD CSC APC ASE: SS ASE: PS NE-ASE
A1 A2 A1 A2 A1 A2

Token Y Y Y Y Y Y Y Y Y
POS-tag Y Y Y Y Y Y Y
Chunk-tag Y
IOB-chain Y Y Y Y Y Y Y Y
Dependency chain Y
VerbNet class Y
Connective Label Y Y Y
Argument 2 Label Y

Table 1: Token-level features for classification and sequence labeling tasks: Discourse Connective De-
tection (DCD), Connective Sense Classification (CSC), Argument Position Classification (APC), and
Argument Span Extraction (ASE) of intra- (SS) and inter-sentential (PS) explicit and non-explicit (NE)
relations.

arguments, their concatenation, and a boolean fea-
ture indicating their match.

The Brown Cluster and Lemma features are
main-verbs’ brown clusters and lemmas, their con-
catenation and boolean features for matches (4).
Unlike VerbNet, these features are also generated
for a Cartesian product for the arguments’ subject,
direct and indirect objects. Consequently, there
are 4 features for verbs and 24 for other depen-
dency roles (3 + 3 + 9 + 9) per feature type.

4 Individual Modules

In this section we provide implementation details
for the individual components of the discourse
parser. We first address explicit and then non-
explicit relations.

4.1 Explicit Discourse Relations
The explicit relation pipeline consists of Discourse
Connective Detection, Connective Sense Classifi-
cation, Argument Position Classification and Ar-
gument Span Extraction tasks.

4.1.1 Discourse Connective Detection
Since Discourse Connective Detection is the first
step in discourse parsing, the performance of the
task is critical. The task is cast as sequence label-
ing with CRFs. The performance of the models
is tuned by feature ablation to yield a model that
achieves F

1

of 0.9332 on the development set. The
best model is trained on cased tokens, POS-tags,
Chunk-tag and IOB-chain features.

4.1.2 Connective Sense Classification
Following (Stepanov et al., 2015) the Connective
Sense Classification step assigns a sense to a con-

nective considering only cased tokens. The classi-
fication is performed directly into 14 explicit rela-
tion senses.

4.1.3 Argument Position Classification
Due to the fact that explicit discourse connec-
tives have a strong preference on the positions of
their arguments, depending on whether they ap-
pear at the beginning or in the middle of a sen-
tence (Stepanov and Riccardi, 2013), the task is
easy. The features used for the task are cased to-
kens, POS-tags and IOB-chains. Case of the to-
kens carries position information. The accuracy
on the development set without error propagation
is 0.9868.

4.1.4 Argument Span Extraction
Argument Span Extraction is the main focus of the
development for the submission. We train CRF
model for each of the arguments of the intra- and
inter-sentential relations considering a single sen-
tence as a candidate (i.e. all multi-sentence rela-
tions are missed). As a candidate for the inter-
sentential Argument 1 we consider only immedi-
ately preceding sentence (effectively missing all
non-adjacent Argument 1 relations).

Since Argument 2 models make use of connec-
tive span labels as a feature, and intra-sentential
Argument 1 model makes use of both connective
and Argument 2 labels; these models are trained
using reference annotation spans. For the Argu-
ment Span Extraction of inter-sentential Argument
1, additional to the training of the CRF models we
also make use of the heuristic, that takes the sen-
tence as a whole and removes leading and trailing
punctuation.
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There are 4 CRF models for the task with the
additional heuristic for the inter-sentential Argu-
ment 1. The feature sets for each of the models are
selected such that they maximize the F-measure of
both arguments together.

The CRF model for the inter-sentential Argu-
ment 1 yields higher performance than the heuris-
tic. However, the submitted system exploits the
heuristic, since the difference between the two for
the both argument spans is not large (0.4981 vs.
0.4936 for the heuristic).

4.2 Non-Explicit Discourse Relations

The non-explicit relation parsing pipeline consists
of Relation Sense Classification (NE-RSC) and
Argument Span Extraction (NE-ASE) tasks. Even
though, NE-ASE is applied after NE-RSC with the
idea of exploiting classification confidences for fil-
tering out the candidate relations, the two tasks are
fairly independent.

4.2.1 Non-Explicit Relation Sense
Classification

The set of features for the task is described in Sec-
tion 3. It is the only task that makes use of the
argument and relation level features. Due to the
low state-of-the-art on the task, the focus is on the
development of the models that maximize the per-
formance of the majority senses – EntRel and Ex-
pansion.Conjunction. The flat classification mode
is considered as it yields higher performance for
these senses (e.g. for EntRel the classification into
4 top-level senses + EntRel yields F

1

of ⇡ 0.30,
while flat classification into 14 full senses + Ent-
Rel F

1

of 0.44).

4.2.2 Non-Explicit Argument Span
Extraction

The task is implemented similar to the Argument
Span Extraction of the inter-sentential Argument
1, and considers the same feature set (cased token,
POS-tag, and IOB-chain). Similarly, we experi-
ment with the span extraction heuristic by only re-
moving leading and trailing punctuation.

Unlike explicit relations, the CRF models for
the non-explicit argument span extraction perform
significantly better than the heuristics. However,
due to the error propagation from the Relation
Sense Classification task, the heuristics yield the
higher F

1

-measure for the end-to-end parsing of
non-explicit relations. Thus, the submitted sys-

tem contains purely heuristic Non-Explicit Argu-
ment Span Extraction.

5 Official Evaluation Results

The official end-to-end parsing evaluation of the
CoNLL 2016 Shared Task on Shallow Discourse
Parsing carried on TIRA platform (Potthast et al.,
2014) is on a per-discourse relation basis. A re-
lation is considered to be predicted correctly only
in case the parser correctly predicts (1) discourse
connective head, (2) exact spans and labels of both
arguments, and (3) sense of a relation. The official
evaluation is reported for the PDTB development
and test sets (sections 22 and 23, respectively) and
a blind test set.

The reported evaluation metrics are (1) explicit
discourse connective, (2-4) Argument 1 and Argu-
ment 2 spans individually and together, and the
sense of a relation. The reported micro-F

1

mea-
sure of the sense classification is equivalent to the
end-to-end parsing performance as it considers the
error propagation from the upstream tasks. The
metrics are reported for explicit and non-explicit
relations individually and jointly. The perfor-
mance of the submitted system on all the metrics
is reported in Table 2. On the closed-track eval-
uation, the system achieves end-to-end parsing F

1

of 0.3246, 0.2789 and 0.2510 on the development,
test and blind test sets respectively.

6 Comparison to CoNLL 2015 Systems

The current shared task is the second edition of the
CoNLL Shared Task on Shallow Discourse Pars-
ing. Thus, it makes sense to compare the perfor-
mances of the submission to the systems of the
first edition (i.e. the winner (Wang and Lan, 2015)
and (Stepanov et al., 2015), which is taken as the
baseline). Since the submitted system is an exten-
sion of (Stepanov et al., 2015), the main focus of
the comparison is on the changes and their effects
on the performance.

We first compare the system performance to the
last year’s systems on the end-to-end parsing score
on the blind test set (see Table 3). The current
submission outperforms the baseline (Stepanov et
al., 2015) as well as the best system (ECNU)
(Wang and Lan, 2015). The recall of the 2015
winner is slightly higher (0.2407 vs. 0.2432 for
ECNU); however, the difference is well compen-
sated by the higher precision (0.2622 vs. 0.2369
for ECNU).
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Task

Connective
Arg 1
Arg 2
Arg 1+2
Parser

All Relations
Dev Test Blind

0.9332 0.9243 0.8856
0.6417 0.5890 0.5991
0.7664 0.7188 0.7586
0.5471 0.4844 0.5060
0.3246 0.2780 0.2510

Explicit
Dev Test Blind

0.9332 0.9243 0.8856
0.5566 0.4964 0.5028
0.7907 0.7651 0.7205
0.4936 0.4456 0.4184
0.4589 0.3960 0.3174

Non-Explicit
Dev Test Blind

– – –
0.6951 0.6558 0.6683
0.7451 0.6778 0.7911
0.5940 0.5180 0.5805
0.2089 0.1756 0.1946

Table 2: Task-level and end-to-end F
1

-measures of the discourse parser on the development, test, and
blind test sets for explicit and non-explicit relations individually and jointly for all relations. The task-
level performances are reported with the error propagation. Thus, the sense classification performances
are equivalent to the end-to-end parser performances.

System P R F
our system 0.2622 0.2407 0.2510
ECNU 0.2369 0.2432 0.2400
(Stepanov et al., 2015) 0.2094 0.2283 0.2184

Table 3: Precision (P), recall (R) and F
1

(F) of the
end-to-end discourse parsing on the blind test set
for the best CoNLL 2015 Shared Task systems and
the current submission.

System Dev Test Blind
Arg 1+2 Span Extraction

our system 0.5940 0.5180 0.5805
(Stepanov et al., 2015) 0.4000 0.3730 0.3831

Non-Explicit Parsing
our system 0.2089 0.1756 0.1946
(Stepanov et al., 2015) 0.1577 0.1330 0.1577

Table 4: F
1

for the non-explicit argument extrac-
tion and parsing.

The major change from (Stepanov et al., 2015)
is the elimination of the Non-Explicit Relation De-
tection step. The step classified non-explicit re-
lation candidates into relations and non-relations.
However, the ratio of non-related adjacent sen-
tence pairs in the PDTB is very low (circa 1%).
Consequently, the step was penalizing the perfor-
mance on non-explicit relations. As it can be ob-
served from Table 4, there is a major improvement
in performance for non-explicit argument spans.

The other changes are in the feature sets of
Connective Detection and the Argument Span Ex-
traction of the explicit intra-sentential Argument 2.
For the former we improved the performance on
the development set, but the performance on the
test and blind test sets dropped (see Table 5). For
the latter, we introduced a new feature – VerbNet
(Kipper et al., 2008) classes – intended to capture
the attribution spans. From the results it appears
that the feature is useful, as they are better than

System Dev Test Blind
Discourse Connective Detection

our system 0.9332 0.9243 0.8856
(Stepanov et al., 2015) 0.9219 0.9271 0.8992

Explicit SS Arg 2
our system 0.7907 0.7651 0.7205
(Stepanov et al., 2015) 0.7748 0.7616 0.7068

Table 5: F
1

for the Discourse Connective Detec-
tion and explicit intra-sentential Argument 2 span
extraction.

the results of (Stepanov et al., 2015) despite the
lower connective detection performance.

7 Conclusions

In this paper we have presented the parser sub-
mitted to CoNLL 2016 Shared Task on Shallow
Discourse Parsing. The parser is a modified ver-
sion of the system of (Stepanov et al., 2015). We
have described the discourse parsing architecture
and models for each of the sub-tasks. The distinct
feature of the approach is casting the span extrac-
tion tasks are token-level sequence labeling with
Conditional Random Fields. The focus of the de-
velopment for the shared task was on Argument
Span Extraction and its optimization for the end-
to-end parsing score on the development set. The
main change made to the baseline version of the
system is the elimination of non-explicit relation
detection step, which boosted the overall perfor-
mance of the system to outperform the CoNLL
2015 Shared Task winner.
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