
D6.2 – Report on the summarization views of the
SENSEI prototype

Document Number D6.2

Document Title Report on the summarization views of the SENSEI prototype

Version 1.6

Status Final

Workpackage WP6

Deliverable Type Report

Contractual Date of Delivery 31.10.2015

Actual Date of Delivery 30.10.2015

Responsible Unit USFD

Keyword List Summarization views, user interface, prototype, deployment,
software licensing

Dissemination level PU

Editor
Adam Funk (University of Sheffield, USFD)

Contributors
A R Balamurali (Aix Marseille Université, AMU)
Fabio Celli (University of Trento, UNITN)
Benoit Favre (Aix Marseille Université, AMU)
Carmelo Ferrante (University of Trento, UNITN)
Adam Funk (University of Sheffield, USFD)
Rob Gaizauskas (University of Sheffield, USFD)
Vincenzo Lanzolla (Teleperformance, TP)

SENSEI Coordinator
Prof. Giuseppe Riccardi
Department of Information Engineering and Computer Science
University of Trento, Italy
giuseppe.riccardi@unitn.it

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 2/42

mailto:giuseppe.riccardi@unitn.it

Document change record

Version Date Status Author (Unit) Description

0.1 2015-07-31 Draft Rob Gaizauskas (USFD) Initial Outline

0.2 2015-08-03 Draft Benoit Favre (AMU) Rework outline

0.3 2015-08-04 Draft Rob Gaizauskas (USFD) Minor mods to outline

0.4 2015-08-24 Draft A R Balamurali (AMU) Added section: Conversa-
tion as a graph view

0.5 2015-08-25 Draft Benoit Favre (AMU) Add prototype table

0.6 2015-09-01 Draft Adam Funk (USFD) Add repository updates

0.7 2015-09-02 Draft Benoit Favre (AMU) Repository deployment and
software distribution

Fabio Celli (UNITN) Add Mood view

0.8 2015-09-02 Draft Fabio Celli (UNITN) Updated Mood view

0.9 2015-09-28 Draft Adam Funk (USFD) Extrinsic evaluation

1.0 2015-10-04 Draft Vincenzo Lanzolla (TP) Speech use case views

Adam Funk (USFD) Social media use case
views; introduction; conclu-
sion; software distribution

Fabio Celli (UNITN) Update mood view

1.1 2015-10-04 Draft Benoit Favre (AMU) Prototype description

1.2 2015-10-05 Draft Adam Funk (USFD) Conclusion

1.3 2015-10-10 Draft Elisa Chiarani (UNITN) Quality check completed

Mijail Kabadjov (UESSEX) Scientific review completed

1.4 2015-10-19 Draft Adam Funk (USFD) Corrections, introduction,
executive summary

Fabio Celli (UNITN) Introduction

Vincenzo Lanzolla (TP) Introduction

1.5 2015-10-20 Final Adam Funk (USFD) Corrections

1.6 2015-10-27 Final Giuseppe Riccardi (UNITN) Final review

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 3/42

Executive Summary
In this deliverable, we present our progress on summarization views in Period 2. We contin-
ued the lines of work pursued during Period 1 of the project on discourse parsing of spoken
conversations, on extracting event structure and temporal expressions and on inter- and intra-
document coreference in social media, and in addition to these we pursued a new line of work
on argumentation structure of conversations planned for the second year.

In this report, Section 2 explains the objectives and broad design of the prototype; Section 3
explains the implementation of the summarization views as well as changes to the reposi-
tory software and details of the software deployment; Section 4 presents our plans for public
distribution of the project’s software.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 4/42

Contents

1 Introduction 8

1.1 Follow-up to Period 1 activities . 8

1.2 Follow-up to recommendations from the first review 9

2 Prototype description 9

2.1 Extrinsic evaluation scenarios . 10

2.2 Demonstration purposes . 11

2.3 Evolution of design elements . 11

3 Implementation details 12

3.1 Updates to repository . 12

3.2 Summarization views: speech use case . 12

3.2.1 Elastic search / Kibana . 12

3.2.2 Updates to ACOF tool . 13

3.3 Summarization views: social media use case . 16

3.3.1 Social Media Prototype 1 . 16

3.3.2 Mood view . 17

3.4 Convergence of summarization views: conversation as a graph view 18

3.4.1 Framework Description: . 19

3.4.2 Data Interface: . 20

3.4.3 Configuration XML: . 20

3.4.4 Plugin Controller & Plugin Interface Manager: 20

3.4.5 Persistent Data Interface: . 21

3.4.6 Non-Persistent Interface Modules: . 21

3.4.7 User Interface: . 21

3.4.8 Platform Details: . 22

3.5 Summary of backend module development activity 23

3.5.1 Event and sentiment detection . 23

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 5/42

3.5.2 MACAON semantic analysis . 23

3.6 Deployment . 24

4 Software distribution 25

5 Conclusions and recommendations 26

References 27

A Complex queries by document features 28

B Repository WADL 30

C Software distribution details 37

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 6/42

List of Acronyms and Abbreviations
Acronym Meaning
ACOF Agent Conversation Observation Form
BART Beautiful Anaphora Resolution Toolkit
CLI command-line interface
CRF Conditional Random Field (a type of machine learning)
CSS Cascading Style Sheets
DOM Document Object Model
FBK Fondazione Bruno Kessler
GATE General Architecture for Text Engineering
GPL GNU Public License
GUI graphical user interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
ISF Interactive Summarization Framework
JAPE Java Annotation Patterns Engine
JSON JavaScript object notation
ML machine learning
NER named entity recogntion
NLP natural language processing
PDTB Penn Discourse Treebank
PHP PHP Hypertext Preprocessor
PNG Portable Network Graphics
POS part of speech
QA quality assurance
REST Representational State Transfer
ROUGE Recall-Oriented Understudy for Gisting Evaluation
SQL Structured Query Language
TBD to be determined
UI user interface
URL Uniform Resource Locator
WADL Web Application Description Language
WEKA Waikato Environment for Knowledge Analysis
XML Extensible Markup Language

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 7/42

1 Introduction
This report describes the current state of summarization views—i.e., user interfaces created
for evaluation and demonstration purposes—of the SENSEI prototype and the supporting soft-
ware, summarizes activities in this workpackage during Period 2, and outlines our plans for the
workpackage in Period 3.

1.1 Follow-up to Period 1 activities
In Period 2 in this workpackage, USFD principally implemented a social media summarization
view user interface, which (as Section 3.3.1 explains) is integrated with the repository, makes
use of our summarization work in WP5, and has been successfully used in extrinsic evaluation
(D1.3). USFD also made refininements to the conversational repository (Section 3.1) and
implemented a basic event- and sentiment-detection tool wrapped in a versatile, configurable
Java component for processing repository documents with GATE applications (Section 3.5.1).

In Period 2 in this workpackage, AMU as focused on consolidating the convergence between
social media and speech use cases. This entailed the development of view which shows
conversations as a graph of interactions complemented by a plugin framework to facilitate
integration of other partners modules. AMU also focused on making new algorithms developed
in other WPs available in the prototype.

In Period 2 for the speech use case, some improvements to the SENSEI annotation tool and
summarization views were considered necessary. Teleperformance, as detailed in Section 3.2,
developed a new version of the SENSEI ACOF tool and implemented an instance of Elastic
Search and Kibana to support data analysis activities and the prototype Evaluation phases.

In Period 2 for this workpackage, UNITN focused on improving the visualization experience for
both social media data and spoken conversational data, and consolidated the the convergence
between the tools and views for both conversation types. To this end, UNITN added mood
view and template-based summary modules to the visualization of social media conversations
(which already included agreement/disagreement and conversational visualizations). Input
processing was moved to a REST service on a separate machine, to allow the algorithms to
evolve without altering the current UI, which will allow other services and visualization to be
integrated easily at any time.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 8/42

1.2 Follow-up to recommendations from the first
review

In accordance with the recommendation made at the review, we intend to publish all the soft-
ware produced by academic partners with source code. Section 4 and Appendix C provide the
full details of these plans.

2 Prototype description
The SENSEI prototype results from the emanation of core work package technology to fa-
cilitate the extrinsic evaluation and showcase the results of the project. The objective of the
prototype workpackage is to foster and organize all software development in the project in
order to make it fit design, quality and distribution guidelines. Another objective is to make
software developed for the two use cases of the project (social media and speech) converge
towards a common interpretation of what a conversation is and how it should be presented to
a user.

The philosophy of the prototype development is to use good development practises without
hampering on research. Deliverable D6.1, released in period one, lists the specific guidelines
towards this objective. The prototype modules are partitioned in three domains: core offline
annotation which is not constrained by time and computation resources and can run on each
site’s choice of infrastructure, backend modules which run on a server hosted at AMU, and
frontend modules which run on the client’s web browser. A few mediation modules are set up
so that cross-domain communication is possible: a data crawling module is provided by Web-
says in order to scrape social-media data from the web and store it in xml files; a conversation
repository stores conversations enriched by core annotation modules; a web server hosts the
prototype UI and backend modules, which dig from the repository.

In phase two, the evaluation workpackage has organized a pilot evaluation scenario for which
software was developed, meeting the needs of extrinsic evaluation. The description of the
prototype starts with an overview of the modules developed for intrinsic and extrinsic evalua-
tion. This overview is detailed in Table 1 and Table 2, showing that both use cases encompass
intrinsic and extrinsic evaluation scenarios. For each evaluation, we have defined a number of
tasks, associated with internal ids, metrics and a time span which drives the prototype devel-
opment. As seen in these tables, a large development effort was spend to meet the summer
deadlines.

From this evaluation schedule, we have prioritized the development of prototype modules
which were necessary for running the different scenarios. Table 3 and Table 4 give details
of the modules according to their internal ids and the different responsibilities in the work

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 9/42

Table 1: Evaluation of prototype for social media

Evaluation Task ID Metric Start End
Intrinsic Article-comment linking 1,2 Link Precision/Pseudo Recall Oct’14 Apr’15

Clustering 1,2 soft clustering metrics May’15 Jun’15
Cluster labelling 1,2 Amazon Mech.Turk May’15 Jun’15
Summarization 1,2 ROUGE Jun’15 Jun’15

Extrinsic Information Seeking 1,2 Accuracy on factual questions, Likert scales Jun’15 Aug’15

Table 2: Prototype evaluation scenarios for speech

Evaluation Task ID Metric Start End
Intrinsic ACOF on 3 questions 1,2,3 ACOF 2,9, 11 are classification task; 9 also

includes emotion detection; P/R/F1
May’15 Jul’15

Complex queries based on synposes 4 Rouge-based metrics Jul’15 Aug’15
Extrinsic ACOF on 3 questions 1,2,3 time-to-task comparison; accuracy; agree-

ment among evaluators
Jul’15 Aug’15

Extrinsic Complex queries based on synposes 4 time-to-task comparison; accuracy; agree-
ment among evaluators

Aug’15 Sep’15

package. The prototype versions are documented according to the languages targeted, the
kind of features involved (semantic, parasemantic, discourse), the owner and the contributors.

Table 3: Prototype versions for social media. The second version will be developed during phase 3.

ID Language Semantic Parasemantic Discourse Owner Contributor Features
1 EN no no no USFD UI, Summary generation, clustering, labelling

AMU: UI, topic clustering
2 TBD yes yes yes USFD UI, summary generation, clustering, labelling

UNITN: Agreement/disagreement, moods
AMU: UI, topic clustering, framenet annotations, sentiment
analysis

2.1 Extrinsic evaluation scenarios
Extrinsic evaluation scenarios are fully detailed in D1.3. In the social media use case, the sce-
nario consists in asking journalists to write a town-hall meeting summary from the comments to
a news article with the approach developed at USFD. This approach works in three steps: the
user first clusters the comments according to their stance, then the clusters need to be labeled
with a representative title, and finally, a summary is written from the cluster labels. At each
stage of the methodology, the user can be helped by automatic or semi-automatic processes
which might replace one or multiple stages.

For the speech use case, two scenarios are evaluated. First quality assurance supervisors
from a call center must assess a subset of the agent conversation observation form questions,
using predicted values and conversation analysis and summarization tools. Second, QA su-
pervisors are asked to answer complex queries about the content of a conversation collection.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 10/42

Table 4: Prototype versions for speech.

ID Language Semantic Parasemantic Discourse Owner Contributor Features
1 IT no yes yes UNITN Dialog Acts, overlaps, emotion Recognition, lexical, senti-

ment
2 FR, EN yes no yes AMU Baseline template-based synopses, abstractive summariza-

tion, framenet parsing
UNITN: abstractive summarization

3 FR, IT no yes no AMU Sentiment analysis, prosody-based classifiers, ACOF classi-
fier

4 FR, IT no no no TP Complex queries UI with Elastic Search / Kibana

They achieve this goal through a user interface which provides them with statistics, analyses
and search amenities.

Both use case scenarios cover the semantic, parasemantic and discourse core features as
well as summarization technology. In addition, care has been take to provide users with well
designed UI so that ergonomy does not impact evaluation results.

2.2 Demonstration purposes
In addition to extrinsic evaluation, an important aspect of the prototype is demonstration. More
than a communication device towards the outside of the project, this need was evidenced by
the difficulty of journalism professionals to describe how natural language processing tech-
nology, and in particular summarization technology, could help them in their daily work. The
prototype, and in particular its modules related to the social media use case, has the extra
requirement that it should be a starting point for discussing with non-scientist professionals
which work with conversations as to help them expression their need, and show them what is
possible with today technology and what will be at reach with tomorrow technologies.

2.3 Evolution of design elements
Compared to the design elements proposed in D6.1, we had to evolve a few concepts in order
to keep up with the project objectives. In particular, we decided to improve the robustness
of the repository towards large data streams, and had as well to create lightweight schemas
for putting annotations in the repository. An other problem was the user interface flexibility
required for extrinsic evaluation with non computer scientist users such as quality assurance
supervisors or journalism professionals. The last aspect was one of collaboration between
developers where a plugin system was defined so that software developed by one partner
could be run by other partners in the context of their UI elements without complex software
deployment.

All those aspects are covered in details in subsequent sections.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 11/42

3 Implementation details

3.1 Updates to repository
The repository specified in D5.1 has been successfully used, but some improvements were
considered necessary and carried out as follows.

• The original implementation was unable to process very large (e.g., 700 MB) Websays
XML documents without running out of memory. (One Websays XML document con-
tains many crawled items and translates into the same number of SENSEI repository
documents.) We changed the internal implementation of the corresponding HTTP POST
endpoint to process the XML as a stream rather than a DOM (a document object model,
all of which has to be in memory at the same time).

• We added a GET endpoint that supports more flexible queries based on document fea-
tures, with options to limit the number of results, to return either full documents or docu-
ment IDs, and to look for the absence or presence of features as well as specific values.
This is described in detail in Appendix A. This query system allows the various SENSEI
components to interact with each other through the repository with finer control.

• We removed the REST endpoint that allowed a document (specified by ID) to be com-
pletely overwritten, because it was considered dangerous—if two components called it
on the same document at the same time, the results would be unpredictable. Instead,
components must use the correct operations to add and remove annotation sets and
document features.

The WADL (Web Application Description Language) for the current version of the repository is
included for reference as Appendix B.

3.2 Summarization views: speech use case

3.2.1 Elastic search / Kibana

Elastic Search is a search server based on Lucene, with full-text search engine, REST web
interface and schema-free JSON documents, for its native features can be easily integrated
with the JSON technology used in SENSEI project. Elastic Search is developed in Java and is
released as open source under the terms of the Apache License.

Elastic Search has many plugins that increase capabilities and functions, for our purposes, we
installed:

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 12/42

• the Marvel plugin, used for building a GUI to show statistics, information about the server,
etc.;

• the Sense query tool, with its capabilities to create, update, delete indexes and docu-
ments and searching them.

All annotated data in Periods 1 and 2, previously stored in a MySQL database, have been
exported, converted to JSON, then imported into Elastic Search (ES). Before importing data
through the Sense plugin, we created an index in ES with a mapping for all necessary data to.
For the bulk export from the MySQL database and subsequent import into ES, we developed
a PHP module that uses the Elastic Search library for PHP. The machine-generated synopsis
and ACOF which we received from other partners have been converted to JSON and imported
in Elastic Search, where human- and machine-annotated data can coexist.

Kibana is an open source analytics and visualization platform designed to work with Elastic-
search and adopted for the SENSEI project to analyze data indexed in Elastic Search. Kibana
has a web UI user friendly that shows data in a simple way but do not have native function that
allow administrator to customize the fields of a report result, so to realize fields customization,
we have installed the Kibana development version and developed some custom field format-
ters. Some custom fields implemented in our Kibana installation are the audio player, that
allow to play the audio file of the conversation, and the conversation transcription that open
a popup with all conversation transcription. For audio player we put an HTML5 audio player
linked to audio file.

Kibana offers many charts and reports that can be created, customized and organized in a
dashboard for a better user experience.

Figures 1 and 2 show examples of the user interface.

3.2.2 Updates to ACOF tool

In Period 1 the SENSEI ACOF Annotation tool, specified in D2.2, has been developed to
support Quality Assurance supervisors in the annotation work, providing a user friendly web
interface to fill the SENSEI ACOF and the synopsis for each conversation. The annotated data
were stored in a MySQL Database. In Y2 the tool has been reviewed as listed below:

• The data layer changed from the initial MySQL Database, where are stored all human
annotated data, to a combination of MySQL database and Elastic Search: in the new
version when users save the ACOF, data are stored both in MySQL and Elastic Search.
We decide to maintain the MySQL database as a backup solution, as soon as we verify
that our Elastic Search implementation is robust and reliable, we can decide to quit the
MySQL database and avoid redundancy.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 13/42

Figure 1: Kibana search result

• To read the machine generated synopsis and answers to the questions, a new form
“Monitoring prefilled” has been developed. The new view shows at the top of the form,
the synopsis predicted by partner systems (pre-loaded into ES), info that can help the QA
Supervisor to understand the conversation before starting the listening and evaluation.
This form is shown in Figure 3.

• Report are empowered with a better search criteria and filters to refine search, there
are more options to what to filter, what to search, and which elements compare (like
questions)

• A customizable table of results, that lets the user choose which columns were visualized,
very useful to compare questions, scores and other data.

• Excel export of search results

The new version of the SENSEI ACOF tools carry out searches directly in Elastic Search
instead of using the MySQL database—this gives greater efficientcy in full-text searches.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 14/42

Figure 2: Kibana Dashboard

Figure 3: New view monitoring form prefilled

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 15/42

3.3 Summarization views: social media use case

3.3.1 Social Media Prototype 1

The first social media prototype, as used in the extrinsic evaluation described in D1.3, is pre-
sented to the user as a web page. As Figure 4 shows, it consists of a split page with The
Guardian’s article and comments in the left pane and SENSEI’s “added value” in the right
pane.

Figure 4: Screenshot of the social media prototype.

The page is dynamically generated with PHP1 from documents in a local SENSEI conversa-
tional repository running at USFD (so it can be integrated with the central repository later). The
PHP page first reads a master document for a particular summarization (manual or automatic)
of an article and a set of comments; the master document’s features2 include the following
information, used to put the rest of the HTML page together.

• The URL of the original article is used to embed the article in the left-hand pane.
1https://secure.php.net/manual/en/index.php
2Please refer to Section 3 of D5.1 for a full explanation of the document model used.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 16/42

https://secure.php.net/manual/en/index.php

• An identifier for the pie chart document is used to embed it in an tag using a
data:image/png URL. The pie chart in the current version is generated in advance from
the clusters as a base64-encoded PNG3 image. In the next version of the UI, the pie chart
will be dynamically generated using PHP and JavaScript and will have active features that
appear when users hover and click on the wedges.

• A list of identifiers for summary sentence documents is used to retrieve those sentences
in order from the repository, and to generate a bullet point for each one (although the
comments are hidden when the page is first displayed).

Each summary sentence document has a feature listing the identifiers of the user com-
ment documents associated with it; this list is used to retrieve the comments and gen-
erate a bullet point for one, indented under the summary sentence. Each comment
document contains the following pieces of information used by the PHP page:

– user name;

– the full comment text;

– a snippet of the comment text (generated in advance by removing any quoted mate-
rial in <blockquote> tags, and then truncating the rest at the last whitespace before
90 characters; the effect of this is that a snippet can be up to 90 characters long but
will never be broken in the middle of a word).

If the full comment text and the snippet are identical, the whole comment is shown without
a button to expand the snippet. If they differ, the snippet is shown along with a downward
single chevron that can be clicked to show the full comment instead.

When the page is first displayed, all the comments under the summary sentences are hidden.
Clicking the downward double chevron icon displays the list of comments (as snippets, where
applicable) and shows an upward double chevron icon, which can be used to hide the list
again. All the comments are generated in the page’s HTML initially, however—the displaying
and hiding of comments and changing of icons are all carried out with JavaScript and CSS, so
that once the page is loaded, interaction with it takes place in the user’s browser for speed.

D1.3 explains how this UI has been used in extrinsic evaluation; D5.2 explains how the auto-
matic summary are generated.

3.3.2 Mood view

The tool for the visual summarization of moods is based on the mood classes defined in the
CorEA corpus [1], namely “disappointed”, “worried”, “indignated”, “amused” and “satisfied”.

3Portable Network Graphics

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 17/42

The classes are defined by the corriere.it and are referred to the mood state of the reader after
reading an article. In SENSEI we predict two types of mood scores: mood scores associated
to article/comments and mood scores associated to readers’ profiles (bloggers, author of com-
ments). We visualize both the mood types in a single box associated to the visual structure of
the conversation. When the user of the SENSEI technology activate a onMouseOver action on
a comment or a blogger’s name in the visual conversation summary, the mood of comments
and bloggers are displayed in the mood view box, as shown in Figure 5. In order to obtain the

Figure 5: Visualization of moods in the UNITN demo. We display the predicted mood scores in the
selected comment and the moods expressed by the author of the selected comment.

visual conversation summary, we modified ConVis [2] hoque.carenini14, a visual text analytic
system for exploring topics, threads and bloggers in asynchronous blog conversations (a detail
is reported on the left in Figure 5). The mood view box consists of 2 columns, on the left we
display the mood of the selected comment, on the right the mood expressed by the author of
the comment in the whole conversation, including other comments not selected.

3.4 Convergence of summarization views: con-
versation as a graph view

Summarization systems exist to make the human-human interaction comphrenshible, often
acting as agents for information assimilation [3]. However, such systems have underlying
assumptions like limited topic associations, coherent dialogue structure to name a few. These
assumptions do not hold true for conversations that happen on current Web2.0 platforms.

Instead of conventional summarization, this problem of conversation comprehension can be
seen as an Interactive Summarization problem. Visual representation aided with commonly
used NLP/Data mining technologies can help the end user in a better understanding of these
conversations. With evolving NLP and visual libraries, it is imperative such a system should be
able to associate itself with any future technologies.

Towards this objective, we present the Interactive Summarization Framework (ISF). This frame
work is useful in analyzing the newspaper comments. They follow a structure in which there

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 18/42

is an article to which comments are posted by the readers. These comments in-turn can be
commented up on. The framework can be applied to any conversation of threaded structure4

that is predominantly seen on existing social media platforms like Twitter/Facebook.

3.4.1 Framework Description:

The framework consists of two parts:

1. Persistent Modules - These modules forms the back end of the system where the inter-
action with data happens. The processing of the data also happens at this part.

2. Non-Persistent Modules - These modules take care of representation of the processed
data. The developer is provided with freedom to create their implementation of presenting
the data.

Persistent modules are so called because we would like to keep some of the data interfaces
closed. This would standardize the data ingestion and query process. The users can keep
their implementation data on local repostitories or can access a global repository through the
public interface given to the non persistant modules.

Framework is developed in such way that system developed can assist an end user in under-
standing the conversation by using various NLP and data mining algorithm categories. The
algorithms are categorized into:

1. Sentiment Analysis Algorithms: Detects the sentiment of each conversation [4].
2. Summarization Algorithms: Abstractive and extractive summaries generated from main

articles or using just the comments [5].
3. Troll Detection Algorithms: Removes unwanted conversations which deviate from the

topic of conversation [6].
4. Topic Detection Algorithms: Topics of conversation are uncovered [7].
5. Clustering Algorithms: Clusters the conversation based on the topics and user anno-

tations.
6. Argument Structure Detection Algorithms: Detects the nature of conversation with

respect to their parent conversation [1].

Developers can implement their algorithms in each of the above categories.They are referred
as algorithm instance. Different algorithm instances of each category can co-exist. The devel-
oper can which algorithm instance to be used for the non-persistance modules.

Figure 6 shows the high level architecture of the framework. A brief description of each module
is given in the following sub sections.

4reader comments of Guardian/Lemonde.fr etc

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 19/42

Figure 6: A High Level Architecture

3.4.2 Data Interface:

A standard data format for the news comments is followed. The data interface module interacts
with data sources to collect and transform the data in the required format. At present two data
structures are used: one for representing each conversation as a node with its associated
properties and another for respresenting the edges which links these conversations (nodes).

3.4.3 Configuration XML:

If the system is being deployed locally, developers can add their algorithm instances. To enable
this, a configuration xml is provided. The layout of the xml is given in figure 7. Based on the
type and subtype the framework decides which algorithm instances should be applied to the
data.

3.4.4 Plugin Controller & Plugin Interface Manager:

Framework enables the developer to add algorithm instances as plugins. Basic framework is
developed in python. However, it is platform independed. The developer needs to take care
of extending two interfaces in their pythonic plugin modules. The first interface is executePro-
cess() which interacts with their algorithm implementations. Thereafter, appropriate dbcon-
nect() interface, depending on the algorithm type, is called. Processed data is communicated
between modules as native dictionaries.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 20/42

Figure 7: A sample configuration xml for summarization algorithm instance

3.4.5 Persistent Data Interface:

The processed data from algorithm instances are stored in the database. The database can
be local or remote. However, interfaces to this database are of fixed format and not available
for extension.

3.4.6 Non-Persistent Interface Modules:

The interfaces to database are provided to nonpersistant modules to read the processed data.
However, for including user annotations, a local database is recommended. The developer can
extend the interface module to include additional information they would like to capture from
the end user.

3.4.7 User Interface:

A web interface/desktop interface can be provided as a non-persistant user interface. Figure 8
shows the current user interface for conversations reprsentation in the graph view. The article
is shown in the centre (marked in pink) and the edges represents the comments. This inturn
can go in a recursive manner. All the output of the non-persistent module is projected on to
this graph.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 21/42

Figure 8: Graph view of the conversation. The article is in the center with comments around it. The
user can interact with each entity to analyze and understand them.

3.4.8 Platform Details:

The framework is build using python 2.7. The backend (database) is supported by MySQL
version 14.14.5 For managing plugins, we use Yapsy6. New plugins can be integrated into the
system by adding the implementation into plugin folder along with the description of the plugin
in the associated yapsy.plugin file. The user interface is developed using PHP (version 5.4)
with the vis.js (version 3.11)7 framework for visual representation. The server used for hosting
the user interface is Apache 2.4.8 A demo of the framework implementation can be found at

5http://www.mysql.com/
6http://yapsy.sourceforge.net/
7http://visjs.org/
8http://httpd.apache.org/

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 22/42

http://youtu.be/sGyDnDHZDmk.

3.5 Summary of backend module development ac-
tivity

3.5.1 Event and sentiment detection

We adapted existing GATE [8, 9] tools from the ARCOMEM project[10] into a component for
carrying out the following tasks for English:

• standard NLP (e.g., tokenization, POS-tagging, lemmatization) to a high standard;

• named-entity recognition to a high standard;

• event detection at a baseline level on our data (to be tuned for better performance on our
data in the future);

• sentiment detection at a baseline level on our data (to be tuned for better performance
on our data in the future).

The GATE pipeline is wrapped in a Java component which works well with the conversational
repository; this component polls the repository (using the advanced query system described in
Section 3.1 and Appendix A) for batches of documents that it has not yet processed, processes
them, and then sends annotation sets and document features back to the repository, including
a flag document feature used in subsequent queries to distinguish the processed documents.

The Java component is highly configurable so it can be used to run other GATE pipelines over
repository documents and send back to the repository any specified document features and
annotations.

3.5.2 MACAON semantic analysis

A repository population module was developed for the MACAON semantic analysis toolchain.
Thanks to python bindings, it is possible to interface each stages of the analysis with the
repository and update document annotations with that provided by MACAON. Models also
had to be trained for Italian while they were already available for French and English.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 23/42

http://youtu.be/sGyDnDHZDmk

3.6 Deployment
Since Period 1, the prototype has been hosted on a server at AMU. Since the repository is
a central service, all partners have to be able to contribute to it. Multiple options have been
discussed:

Option 1 Every partner releases software modules which are run on AMU servers in order to
feed the repository

Option 2 The repository is made accessible to all partners and they run their modules to feed
it remotely

Since option 1 requires a lot of effort and synchronization, it was decided to set option 2
up with appropriate security. Option 1 might be implemented towards the end of the project
when the repository-feeding modules are stable. Releasing modules and running them in a
centralized way could ensure that they can be released to the public, and therefore benefit the
dissemination of the project’s results.

The repository is run on the sensei-proto.lif.univ-mrs.fr machine as a tomcat service,
exposed on port 8080. This port is not directly accessible through the internet due to the
repository not implementing access control. Instead, we are using the LIF/AMU ssh gateway
as a means to access that host/port. Users have been created on that gateway for each
member of the project using the repository. These users, identified through public/private
keys, cannot run commands, but have a tunnel automatically created to the sensei-proto:

8080 machine, which can be exploited on the local end of the ssh connection to access the
repository securely and rightfully through urls such as http://localhost:8080/repository/

documents.

Details for obtaining credentials and accessing the repository are available on the sensei-proto
wiki9.

Under that mode of access (ssh tunnel), the repository still has two shortcomings:

• Consistency is not imposed (an other partner could delete the document you are writing);

• Robustness is not provided (system administrators can reboot the machine anytime to
perform updates without accounting for in progress transactions).

Users of the repository must pay attention to those shortcomings and implement proper safe-
guards to ensure the integrity of the data.

9https://gitlab.lif.univ-mrs.fr/benoit.favre/sensei-proto/wikis/RemoteRepositoryAccess,
access restricted to registered users.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 24/42

sensei-proto.lif.univ-mrs.fr
sensei-proto:8080
sensei-proto:8080
http://localhost:8080/repository/documents
http://localhost:8080/repository/documents
https://gitlab.lif.univ-mrs.fr/benoit.favre/sensei-proto/wikis/RemoteRepositoryAccess

4 Software distribution
In response to a recommendation made at the first review, we are exploring the idea of dis-
tributing the software created in the course of the SENSEI project as a return to the community.
The long term objective is to enable an outsider of the project to gather is own data, annotate
it with SENSEI tools, put it in the conversation repository and have it presented in the various
user interfaces of the prototype. To attain that objective, we have devised a strategy:

1. Document the available software modules candidate for release

2. Have partners develop, document and release those modules

3. Make a testing scenario in order to validate the set as a whole

4. Find a long-term hosting plan

5. Release the software

In this phase, we have focused on the first step in order to document the state of the soft-
ware modules pre-existing or developed for SENSEI. For each piece of software, a number of
fields have been defined to characterize different aspects relevant to software distribution. The
following items are documented:

• Name: name of the component (or placeholder if no name yet)

• Owner: Partner in charge of delivering this component

• Provides: features / UI provided

• Used in: what other components / activities require that component

• URL: url where the software can be downloaded, where the doc is available

• Opensource: whether or not it is opensource

• License: license name (proprietary if it is a specific license)

• Programming languages: main programming languages of the component

• Dependencies: what other software it depends on and their license

• Models can be distributed?: whether or not models can be distributed

• Available models: languages / domains for which models can be distributed

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 25/42

• Repository integration: whether the software has repository integration (or the glue code
can be distributed)

Appendix C lists those values for the candidate modules for release.

5 Conclusions and recommendations
The conversational repository has been completed and deployed successfully, and no further
work is required on it except for debugging as necessary and handling any additional features
that might be needed.

We have provided several different summarization views for the speech and social media use
cases. These are currently integrated with the repository and other components to varying
degrees, and need to be fully integrated in Period 3, along with other improvements based on
the results of the extrinsic evaluations as reported in other current deliverables.

We will also refine the backend modules; in particular, the event and sentiment detection tool
needs to be tuned for our data and we will explore temporal information extraction as well.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 26/42

References
[1] Celli Fabio, Riccardi Giuseppe, and Ghosh Arindam. Corea: Italian news corpus with

emotions and agreement. In Proceedings of CLC-2014, 2014.

[2] Enamul Hoque, Giuseppe Carenini, and Shafiq Joty. Interactive exploration of asyn-
chronous conversations: Applying a user-centered approach to design a visual text ana-
lytic system. In Proceedings of the Workshop on Interactive Language Learning, Visual-
ization, and Interfaces, pages 45–52. Association for Computational Linguistics, 2014.

[3] Gabriel Murray and Giuseppe Carenini. Summarizing spoken and written conversations.
In Proceedings of EMNLP-2008, pages 773–782, 2008.

[4] Aditya Joshi, A. R. Balamurali, Pushpak Bhattacharyya, and Rajat Mohanty. C-feel-it: A
sentiment analyzer for micro-blogs. In Proceedings of ACL-2011, pages 127–132, 2011.

[5] Trione Jeremy. Méthodes par extraction pour le résumé automatique de conversations
parles provenant de centres d’appel. In Proceedings of RECITAL -2014, pages 104–109,
2014.

[6] Erik Cambria, Praphul Ch, Avinash Sharma, and Amir Hussain. Do not feel the trolls. In
Proceedings of ISWC-2010, 2010.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach.
Learn. Res., 3:993–1022, March 2003.

[8] H. Cunningham, V. Tablan, A. Roberts, and K. Bontcheva. Getting more out of biomedical
documents with gate’s full lifecycle open source text analytics. PLoS Comput Biol, 9(2),
2013.

[9] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Niraj Aswani,
Ian Roberts, Genevieve Gorrell, Adam Funk, Angus Roberts, Danica Damljanovic,
Thomas Heitz, Mark A. Greenwood, Horacio Saggion, Johann Petrak, Yaoyong Li, and
Wim Peters. Text Processing with GATE (Version 6). University of Sheffield, 2011.

[10] Diana Maynard, Gerhard Gossen, Marco Fisichella, and Adam Funk. Should I care about
your opinion? detection of opinion interestingness and dynamics in social media. Journal
of Future Internet, 2014.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 27/42

A Complex queries by document features
Queries with a limit on the number of documents will return all the matching documents if the
number of matches is less than the limit, and calling the same query repeatedly with the same
limit (or a smaller one) will generally return the same documents (or a subset) unless some
documents have been modified between calls.

• GET doc-feature-query/ids?<query>

This returns a list of IDs for documents that match the query, using the system described
below.

• GET doc-feature-query/full?<query>

This returns a list of full documents that match the query, using the system described
below.

The query system uses feature-value pairs and specification-feature pairs of the form <string>

=<string> joined with the & symbol. All the values for one feature are joined with a logical or
into a subquery, then all the subqueries are joined with a logical and. The order of the pairs in
the query is unimportant.

Each specification-feature pair, which generates a single subquery, consists of one of the
following pseudo-features followed by a feature name or integer.

• _MAX_=<integer> This sets the limit for the number of documents to be returned. If it is
zero or omitted, there is no limit.

• _PRESENT_=<fname> This specifies that the named feature must be present for documents
to match, although the feature’s value can be null, false, 0, or an empty string.

• _MISSING_=<fname> This specifies that the named feature must be absent for documents
to match.

• _FALSE_=<fname> This specifies that the named feature must be missing, null, false,
0, or an empty string. Note that FOO=false is more restrictive than _FALSE_=FOO. This
pseudo-feature is intended for detecting documents on which a flag either has not been
set yet or has been set to indicate that the specified processing has not yet been carried
out.

Here are some examples:

• ?provenance=plaintext&_MISSING_=USFD_NER&_MAX_=5 Return up to 5 documents whose
feature maps contain "provenance":"plaintext" but do not contain a USFD_NER feature
at all.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 28/42

doc-feature-query/ids?<query>
doc-feature-query/full?<query>
<string>=<string>
<string>=<string>
&
MAX=<integer>
PRESENT=<fname>
MISSING=<fname>
FALSE=<fname>
FOO=false
FALSE=FOO
?provenance=plaintext&_MISSING_=USFD_NER&_MAX_=5
"provenance":"plaintext"
USFD_NER

• ?_FALSE_=USFD_Events&NLP_LEVEL=2&NLP_LEVEL=3 Return all documents whose feature
maps contain either "NLP_LEVEL":2 or "NLP_LEVEL":3 but either no USFD_Events feature
or one that is null, false, 0, or an empty string.

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 29/42

?_FALSE_=USFD_Events&NLP_LEVEL=2&NLP_LEVEL=3
"NLP_LEVEL":2
"NLP_LEVEL":3
USFD_Events

B Repository WADL
<?xml version="1.0"?>

<application xmlns="http://wadl.dev.java.net/2009/02"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<grammars/>

<resources base="http://localhost:8080/repository/">

<resource path="/">

<resource path="doc-feature-query/full">

<method name="GET">

<doc>Return documents that match the complex feature query</doc>

<request/>

<response>

<representation mediaType="application/json">

<doc>list of full documents</doc>

</representation>

</response>

</method>

</resource>

<resource path="doc-feature-query/ids">

<method name="GET">

<doc>Return IDs of documents that match the complex feature query</doc>

<request/>

<response>

<representation mediaType="application/json">

<doc>list of document IDs</doc>

</representation>

</response>

</method>

</resource>

<resource path="document">

<method name="POST">

<doc>Store the document (JSON) and return the ID</doc>

<request>

<representation mediaType="application/json"/>

</request>

<response>

<representation mediaType="application/json">

<doc>newly allocated ID</doc>

</representation>

</response>

</method>

</resource>

<resource path="document/plaintext">

<method name="POST">

<doc>Store the document (plain text) and return the ID</doc>

<request>

<representation mediaType="text/plain">

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 30/42

<param name="request" style="plain" type="xs:string"/>

</representation>

</request>

<response>

<representation mediaType="application/json">

<doc>newly allocated ID</doc>

</representation>

</response>

</method>

</resource>

<resource path="document/websays">

<method name="POST">

<doc>Store the document(s) (XML) and return the list of IDs</doc>

<request>

<representation mediaType="application/xml"/>

<representation mediaType="text/xml"/>

</request>

<response>

<representation mediaType="application/json">

<doc>newly allocated ID</doc>

</representation>

</response>

</method>

</resource>

<resource path="document/{docId}/annotation-set/{name}/{annId}">

<param name="docId" style="template">

<doc>document ID</doc>

</param>

<param name="name" style="template" type="xs:string">

<doc>annotation set name</doc>

</param>

<param name="annId" style="template">

<doc>annotation ID</doc>

</param>

<method name="DELETE">

<doc>Delete an annotation from the document</doc>

<request/>

<response>

<representation mediaType="application/json"/>

</response>

</method>

</resource>

<resource path="document/{id}">

<param name="id" style="template"/>

<method name="DELETE">

<doc>Delete the specified document</doc>

<request/>

<response>

<representation mediaType="application/json"/>

</response>

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 31/42

</method>

<method name="GET">

<doc>Retrieve the specified document</doc>

<request/>

<response>

<representation mediaType="application/json"/>

</response>

</method>

</resource>

<resource path="document/{id}/annotation-set/{name}">

<param name="id" style="template">

<doc>document ID</doc>

</param>

<param name="name" style="template" type="xs:string"/>

<method name="DELETE">

<doc>Delete an annotation set from the document</doc>

<request/>

<response>

<representation mediaType="application/json"/>

</response>

</method>

<method name="PUT">

<doc>Add annotations (create the named set if needed)

to the document (specified by ID)</doc>

<request>

<representation mediaType="application/json"/>

</request>

<response>

<representation mediaType="application/json"/>

</response>

</method>

</resource>

<resource path="document/{id}/annotations">

<param name="id" style="template"/>

<method name="PUT">

<doc>Add annotations (creating sets as needed) from JSON

to the document (specified by ID)</doc>

<request>

<representation mediaType="application/json"/>

</request>

<response>

<representation mediaType="application/json"/>

</response>

</method>

</resource>

<resource path="document/{id}/feature/{key}">

<param name="id" style="template">

<doc>document ID</doc>

</param>

<param name="key" style="template" type="xs:string">

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 32/42

<doc>feature name</doc>

</param>

<method name="DELETE">

<doc>Delete a feature from the document</doc>

<request/>

<response>

<representation mediaType="application/json"/>

</response>

</method>

</resource>

<resource path="document/{id}/features">

<param name="id" style="template">

<doc>document ID</doc>

</param>

<method name="DELETE">

<doc>Delete features from the document</doc>

<request>

<representation mediaType="application/json">

<doc>list of feature names</doc>

</representation>

</request>

<response>

<representation mediaType="application/json"/>

</response>

</method>

<method name="GET">

<doc>Return the complete feature map of the specified (by ID) document</doc>

<request/>

<response>

<representation mediaType="application/json"/>

</response>

</method>

<method name="POST">

<doc>Return a feature map containing the selected features

of the specified (by ID) document</doc>

<request>

<representation mediaType="application/json"/>

</request>

<response>

<representation mediaType="application/json"/>

</response>

</method>

<method name="PUT">

<doc>Add features (from JSON) to the document (specified by ID)</doc>

<request>

<representation mediaType="application/json"/>

</request>

<response>

<representation mediaType="application/json"/>

</response>

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 33/42

</method>

</resource>

<resource path="documents">

<method name="GET">

<doc>Return all document IDs in the repository</doc>

<response>

<representation mediaType="application/json"/>

</response>

</method>

</resource>

<resource path="documents/false/feature/{key}">

<param name="key" style="template" type="xs:string"/>

<method name="GET">

<doc>Return documents with the specified feature missing,

null, empty (list, string) or zero</doc>

<request/>

<response>

<representation mediaType="application/json">

<doc>list of documents</doc>

</representation>

</response>

</method>

</resource>

<resource path="documents/false/feature/{key}/{limit}">

<param name="key" style="template" type="xs:string"/>

<param name="limit" style="template" type="xs:int"/>

<method name="GET">

<doc>Return documents (up to the limit) with the specified feature

missing, null, empty (list, string) or zero</doc>

<request/>

<response>

<representation mediaType="application/json">

<doc>list of documents</doc>

</representation>

</response>

</method>

</resource>

<resource path="documents/features">

<method name="GET">

<doc>Return documents with features matching the query (flat features only)</doc>

<request/>

<response>

<representation mediaType="application/json">

<doc>list of documents</doc>

</representation>

</response>

</method>

</resource>

<resource path="documents/missing/feature/{key}">

<param name="key" style="template" type="xs:string"/>

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 34/42

<method name="GET">

<doc>Return documents without the specified feature</doc>

<request/>

<response>

<representation mediaType="application/json">

<doc>list of documents</doc>

</representation>

</response>

</method>

</resource>

<resource path="documents/missing/feature/{key}/{limit}">

<param name="key" style="template" type="xs:string"/>

<param name="limit" style="template" type="xs:int"/>

<method name="GET">

<doc>Return documents (up to the limit) without the specified feature</doc>

<request/>

<response>

<representation mediaType="application/json">

<doc>list of documents</doc>

</representation>

</response>

</method>

</resource>

<resource path="documents/present/feature/{key}">

<param name="key" style="template" type="xs:string"/>

<method name="GET">

<doc>Return documents with the specified feature (which might be

false, zero, or empty)</doc>

<request/>

<response>

<representation mediaType="application/json">

<doc>list of documents</doc>

</representation>

</response>

</method>

</resource>

<resource path="documents/present/feature/{key}/{limit}">

<param name="key" style="template" type="xs:string"/>

<param name="limit" style="template" type="xs:int"/>

<method name="GET">

<doc>Return documents (up to the limit) with the specified feature

(which might be false, zero, or empty)</doc>

<request/>

<response>

<representation mediaType="application/json">

<doc>list of documents</doc>

</representation>

</response>

</method>

</resource>

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 35/42

<resource path="test-doc">

<method name="GET">

<doc>Create and store a standard test document</doc>

<response>

<representation mediaType="application/json">

<doc>newly allocated ID</doc>

</representation>

</response>

</method>

<method name="POST">

<doc>Create and store a test document</doc>

<request>

<representation mediaType="text/plain">

<param name="request" style="plain" type="xs:string"/>

</representation>

</request>

<response>

<representation mediaType="application/json">

<doc>newly allocated ID</doc>

</representation>

</response>

</method>

</resource>

<resource path="test-doc/{text}">

<param name="text" style="template" type="xs:string">

<doc>text</doc>

</param>

<method name="GET">

<doc>Create and store a test document</doc>

<request/>

<response>

<representation mediaType="application/json">

<doc>newly allocated ID</doc>

</representation>

</response>

</method>

</resource>

</resource>

</resources>

</application>

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 36/42

C Software distribution details
Name Macaon
Owner AMU
Provides tokenization, pos tags, dependency parsing
Used in Framenet parsing; synopsis generation
URL https://gitlab.lif.univ-mrs.fr/benoit.favre/macaon

Opensource YES
License GPL v3
Programming languages C
Dependencies glib (GPL), libxml (GPL)
Models can be distributed? YES
Available models FR, EN, IT
Repository integration YES

Name Framenet parser
Owner AMU
Provides semantic frames
Used in Synopsis generation
URL not yet published
Opensource to be determined
License to be determined
Programming languages Python
Dependencies svmlight (GPL), cplex (proprietary)
Models can be distributed? YES
Available models FR
Repository integration YES

Name Decoda synopsis generation
Owner AMU
Provides synopses
Used in Evaluation
URL not yet published
Opensource to be determined
License to be determined
Programming languages Python
Dependencies ?
Models can be distributed? YES
Available models FR
Repository integration YES

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 37/42

https://gitlab.lif.univ-mrs.fr/benoit.favre/macaon

Name Tweet sentiment analyser
Owner AMU
Provides sentiment polarity
Used in ?
URL not yet published
Opensource to be determined
License to be determined
Programming languages Ruby
Dependencies kaldi DNNs (BSD)
Models can be distributed? to be determined
Available models FR
Repository integration NO

Name BART
Owner UESSEX
Provides Multilingual Coreference
Used in Higher-level semantic processing, summarisation, argument

parsing, etc.
URL http://www.bart-coref.eu/

Opensource YES
License Apache license (v2.0)
Programming languages Java
Dependencies Stanford NER (GPL), WEKA (GPL), TexPro (FBK licence)
Models can be distributed? YES
Available models EN,IT,FR
Repository integration Not yet

Name Website parsers
Owner Websays
Provides parsed data text
Used in data collection compilation
URL not yet published
Opensource to be determined
License to be determined
Programming languages Java
Dependencies ?
Models can be distributed? no models
Available models no models
Repository integration ?

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 38/42

http://www.bart-coref.eu/

Name PDTB Discourse Parser
Owner UNITN
Provides Discourse Relations
Used in ?
URL not yet published
Opensource to be determined
License to be determined
Programming languages PHP
Dependencies ?
Models can be distributed? ?
Available models EN
Repository integration json schema only

Name ?
Owner UNITN
Provides agree/disagree
Used in social media prototype v2
URL not yet published
Opensource to be determined
License to be determined
Programming languages Perl
Dependencies icsiboost, CRF++
Models can be distributed? no models
Available models no models
Repository integration json schema only

Name ?
Owner UNITN
Provides mood
Used in social media prototype v2
URL not yet published
Opensource to be determined
License to be determined
Programming languages Java
Dependencies None
Models can be distributed? ?
Available models ?
Repository integration json schema only

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 39/42

Name Repository
Owner USFD
Provides Repository
Used in everything in the long term
URL not yet published
Opensource YES
License to be determined
Programming languages Java
Dependencies Jackson; Apache Commons-Lang; Apache CXF; Spring

Framework; Spring MongoDB interface; a MongoDB instance
running on the server

Models can be distributed? no models
Available models no models
Repository integration YES

Name Repository tools
Owner USFD
Provides CLI tools
Used in testing and debugging
URL not yet published
Opensource YES
License to be determined
Programming languages Python
Dependencies Python Requests http://docs.python-requests.org/en/

latest/

Models can be distributed? no models
Available models no models
Repository integration YES

Name Comment linking
Owner USFD
Provides Links between comments
Used in Social media prototype
URL not yet published
Opensource YES
License to be determined
Programming languages Java
Dependencies
Models can be distributed? YES
Available models EN, FR, IT
Repository integration partial

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 40/42

http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/

Name Comment clustering
Owner USFD
Provides
Used in Social media prototype
URL not yet published
Opensource YES
License to be determined
Programming languages Java
Dependencies
Models can be distributed? YES
Available models EN, FR, IT
Repository integration partial

Name Comment cluster labelling
Owner USFD
Provides Clusters of user comments
Used in Social media prototype
URL not yet published
Opensource YES
License to be determined
Programming languages Java
Dependencies
Models can be distributed? YES
Available models EN, FR, IT
Repository integration partial

Name Comment summarization
Owner USFD
Provides Summaries of groups of user comments
Used in Social media prototype
URL not yet published
Opensource YES
License to be determined
Programming languages Java
Dependencies
Models can be distributed? YES
Available models EN, FR, IT
Repository integration partial

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 41/42

Name Event/sentiment detection
Owner USFD
Provides Standard NLP, named-entity recognition, event detection, sen-

timent detection
Used in to be used in summarization and clustering in the future
URL not yet published
Opensource YES
License to be determined
Programming languages Java, Groovy, JAPE
Dependencies GATE
Models can be distributed? YES
Available models EN
Repository integration YES

Name Social media prototype UI for The Guardian
Owner USFD
Provides GUI
Used in extrinsic evaluation
URL not yet published
Opensource YES
License to be determined
Programming languages PHP, JavaScript, CSS
Dependencies
Models can be distributed? no models
Available models no models
Repository integration YES

D6.2 Report on the summarization views of the SENSEI prototype | version 1.6 | page 42/42

	Introduction
	Follow-up to Period 1 activities
	Follow-up to recommendations from the first review

	Prototype description
	Extrinsic evaluation scenarios
	Demonstration purposes
	Evolution of design elements

	Implementation details
	Updates to repository
	Summarization views: speech use case
	Elastic search / Kibana
	Updates to ACOF tool

	Summarization views: social media use case
	Social Media Prototype 1
	Mood view

	Convergence of summarization views: conversation as a graph view
	Framework Description:
	Data Interface:
	Configuration XML:
	Plugin Controller & Plugin Interface Manager:
	Persistent Data Interface:
	Non-Persistent Interface Modules:
	User Interface:
	Platform Details:

	Summary of backend module development activity
	Event and sentiment detection
	MACAON semantic analysis

	Deployment

	Software distribution
	Conclusions and recommendations
	References
	Complex queries by document features
	Repository WADL
	Software distribution details

