
D3.2 – Report on the Multi-Domain and
Cross-Media Parsing Model Adaptation

Document Number D3.2

Document Title Report on the Multi-Domain and Cross-Media Parsing Model
Adaptation

Version 1.0

Status Final

Work Package WP3

Deliverable Type Report

Contractual Date of Delivery 31.10.2015

Actual Date of Delivery 30.10.2015

Responsible Unit UNITN

Keyword List FrameNet, Domain Adaptation, Cross-Language Transfer

Dissemination level PU



Editors
Evgeny A. Stepanov (University of Trento, UNITN)
Frederic Bechet (Aix Marseille Université, AMU)
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Executive Summary
The objectives of WP3 is to automatically generate a structured semantic and para-semantic
representation of human-human conversations in three SENSEI languages: English, French,
and Italian. The three linguistic levels are addressed in the parsing process: (1) syntactic
parsing to segment spoken dialogs or social media conversations into propositions; (2) Berke-
ley FrameNet semantic parsing to extract predicate/argument relations; and (3) para-semantic
feature extraction of behavioral and emotional patterns, as well as sentiment polarities. The
objective of Task 3.3, addressed by this deliverable, is to use of unsupervised or weakly super-
vised methods for adapting these parsing and feature extraction models from one application-
domain or modality to another application-domain or modality. To this end we focus on using
generic rich linguistic resources available in the three SENSEI languages in conjunction with
cross-language and cross-domain adaptation methodologies.

The three adaptation approaches are addressed: cross-language adaptation via Statistical
Machine Translation (Section 3), cross-domain adaptation through re-ranking of n-best lists of
generic or in-domain parsers (Section 4), and cross-domain and cross-language adaptation
of word embeddings (Sections 5 and 6). The first two approaches are addressed on the
FrameNet semantic parsing task, the latter on the tasks of sentiment lexicon translation and
also frame-semantic parsing.

We have observed that the cross-language adaptation with re-ranking methodology performs
significantly worse than the in-domain semantic models. Moreover, the in-domain Italian se-
mantic parser improves significantly with the re-ranking methodology. Therefore, we abandon
the cross-language adaptation with re-ranking methodology and use the re-ranking methodol-
ogy, in case any in-domain data is the desired language is available.

From the cross-language adaptation of word embeddings, we have observed that adapting an
embedding space is as good as full-fledged SMT for sentiment lexicon translation. For the
cross-domain word embedding adaptation, the proposed approach outperforms state-of-the-
art Conditional Random Field approach on the frame-semantic parsing tagging task when little
in-domain adaptation data is available.
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1 Introduction
The objectives of WP3 is to automatically generate a structured semantic and para-semantic
representation of human-human conversations in three SENSEI languages: English, French,
and Italian. The three linguistic levels are addressed in the parsing process: (1) syntactic
parsing to segment spoken dialogs or social media conversations into propositions; (2) Berke-
ley FrameNet semantic parsing to extract predicate/argument relations; and (3) para-semantic
feature extraction of behavioral and emotional patterns, as well as sentiment polarities. The
objective of Task 3.3 is to use of unsupervised or weakly supervised methods for adapting
these parsing and feature extraction models from one application-domain or modality to an-
other application-domain or modality. To this end we focus on using generic rich linguistic
resources available in the three SENSEI languages in conjunction with cross-language and
cross-domain adaptation methodologies.

Specifically, in this deliverable we report activities that took place during Period 2 of SENSEI
project and whose objectives are making use of larger ‘general’ domain language resources
(annotated or not) or tools trained on resource-rich languages to improve the performance of
syntactic, semantic and para-semantic models for SENSEI data. In Section 2 we present the
followed adaptation approaches, and in Sections 3, 4, 5 and 6 their applications to specific
NLP tasks relevant to SENSEI.

The rest of this section presents how content of this deliverable connects to the Period 1 activ-
ities reported in the deliverable D3.1 (Section 1.1). Section 1.2 reports on how the reviewers’
comments were addressed in Period 2. Section 1.3 specifically addresses the Recommenda-
tion 4

1.1 Follow-up to Period 1 Activities
During Period 1 the semantic models and the parsing methodology were developed in WP3
for processing the Human-Human conversations either using corpus-specific or generic state-
of-the-art tools in other languages. The generic state-of-the-art tool in other language is SE-
MAFOR. In the Period 2, based on the reviewers’ comments and the amount of effort needed
to train in-language SEMAFOR models, the idea was abandoned and corpus specific parsers
were trained.

SEMAFOR remained in the cross-language methodology. While in Period 1, there was no
need for transferring its output to the source language, in Period 2 a word-alignment based
annotation transfer was implemented to allow cross-domain re-ranking to take place. Thus, in
Period 2, FrameNet parsing was extended with cross-language annotation transfer and cross-
domain re-ranking.
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1.2 Follow-Up to Recommendations from
the First Review

Recommendation n.1:

“Every language processing task, such as semantic role labeling, coreference resolution or
summarization, should have a clear and formal definition, with a baseline given by the current
state-of-the-art, and an upper bound of performance that can be expected.”

We follow commonly accepted definitions of the task and subtasks. FrameNet parsing task is
defined in Section 3. Specifically, for FrameNet semantic parsing we address identification of
frames, i.e. detection of frame-triggering words and their classification into frames they trigger.
Coreference resolution and summarization tasks are defined in WP4 and WP5, respectively.

For each task, the baselines are defined by the state-of-the-art or corpus-specific tools (e.g.
LUNA FrameNet parser [12] and SEMAFOR [13]). When it comes to upper-bounds of per-
formance, the common approach is to consider either inter-annotator agreement or oracle
performances of n-best output. For domain adaptation with re-ranking we report the baseline
and oracle performances (see Section 4).

Recommendation n.2:

“A systematic error analysis, including the coverage analysis of the language processing al-
gorithms, such as semantic role labeling, coreference resolution or summarization, and the
categorization of errors, should be carried out in each task. Based on this analysis, the work
should be prioritized.”

Having analyzed the upper bound (oracle) of SEMAFOR with cross-language methodology,
the approach is abandoned in favor of corpus-specific parsers.

Recommendation n.4:

“Please consider re-implementing well-engineered state-of-the-art frame-semantic parsing in
a clean architecture conforming to existing standards rather than adapting SEMAFOR, since
the latter method involves significant engineering work.”

Instead of re-implementing SEMAFOR to Italian and French, corpus-specific parsers were
trained following the common approach across languages (Section 1.3). In Period 2, SE-
MAFOR remains only in cross-language adaptation methodology, and it is used as-is, without
re-training any models. A comparison of the performance of the SENSEI architecture devel-
oped for English, French and Italian is described in the next section.

Recommendation n.5:

“WP3 and WP4 should consider designing a joint processing architecture.”

For Part-Of-Speech tagging, dependency parsing and Frame parsing a unified processing
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pipeline has been defined. The same tools have been applied to English (FrameNet, Penn
TreeBank), French (French TreeBank, Asfalda, RATP-DECODA) and Italian (Turin University
Treebank, LUNA). This pipeline is used as a first step for WP4 coreference parser.

1.3 Evaluation of the SENSEI Pipeline for Seman-
tic Frame Parsing

Following the reviewers’ comments and the results obtained during the Period 1 of the project,
we have developed a common pipeline for frame semantic parsing for the three SENSEI lan-
guages: English, French and Italian. This pipeline contains: (1) a syntactic parsing phase that
performs Part-Of-Speech tagging, lemmatization and dependency parsing; then, (2) a seman-
tic frame parser is applied on the obtained syntactic features. This frame parser is based on
the liblinear library that implements linear separators. For each lexical unit (trigger), we have
a classifier choosing a frame among all the possible ones. Once a frame has been selected, a
frame-specific classifier is applied to finding the different frame elements and their roles.

For the frame classifiers, we use the following features:

• Lemma of the trigger

• POS of the trigger

• Syntactic path between the trigger and the frame elements

• Lemmas of the frame elements

• POS of the frame elements

For the frame element classifiers, we use:

• Syntactic path between the trigger and the frame elements

• Lemma of the frame element

• POS of the frame element

• Name of the trigger

• Trigger of the frame

In order to use the common pipeline for different languages and different application domains,
we defined a CoNLL tabular format for encoding a text with all the syntactic features and
semantic frame annotations.
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Table 1: CoNLL tabular format for frame-semantic parsing.

id Word Lemma PoS GovId syntLabel Frame roleInFrame1 roleInFrame2 ...
1 You you PRP 4 SBJ Agent Agent Partner 1
2 and and CC 1 COORD
3 I i PRP 2 CONJ Partner 2
4 have have VBP 0 ROOT
5 done do VBN 4 VC Intentionnally act Undertaking
6 some some DT 8 NMOD Relational quantity Denoted quantity
7 important important JJ 8 NMOD Importance
8 work work NN 5 OBJ Working on Act Mass Factor
9 together together RB 5 MNR Collaboration Manner

In the format, there are 7 columns that contain the syntactic features and the frame names (in
case word is a trigger). The number of additional columns varies with respect to the number of
frames in a sentence, i.e., if there are n frames (on 7

th column), there are n additional columns.
The 7 + n

th column is the frame element role of the word in the n

th frame (see Table 1 for an
example). The spans of multi-word frames were reduced to their syntactic heads.

This pipeline has been trained and evaluated on the 3 SENSEI languages, and compared to
the publish state-of-the-art system results. The systems used for comparative evaluation are
the following:

English
SEMAFOR trained and evaluated on the SemEval’07 FrameNet corpus (generic do-

main)
SENSEI (eng) trained and evaluated on the SemEval’07 FrameNet corpus (generic do-

main)
French
ASFALDA trained on the French Tree Bank FrameNet corpus (generic domain) and

evaluated on the DECODA corpus (specific domain)
SENSEI (fra) trained and evaluated on the DECODA corpus (specific domain)
Italian
LUNA trained and evaluated on the Italian LUNA FrameNet corpus
SENSEI (ita) trained and evaluated on the Italian LUNA FrameNet corpus

The comparative evaluation of the described systems is given in Table 2. As it can be ob-
served, when dealing with specific domains (DECODA, LUNA), the SENSEI pipeline obtains
good results, both for Frame and Role selection. For French, using a generic domain parser
(ASFALDA) leads to inferior results than the application specific one. On the other hand,
for English, the performance of the SEMAFOR parser is better than the SENSEI parser for
generic domain. This can be explained by the fact that the SENSEI pipeline doesn’t integrate
any knowledge databases such as WordNet, and therefore is less prone to generalize on open
domain data.

These results confirm the need for specialized parsers when dealing with specific domains
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Table 2: Evaluation of the SENSEI FrameNet semantic parsing pipeline on 3 languages and 3 applica-
tion domains. Comparison with stats-of-the-art baseline systems.

English Task Precision Recall F-measure
SENSEI (eng) Frame selection 0.853 0.744 0.794

Role selection 0.740 0.567 0.642
SEMAFOR Frame selection 0.905 0.905 0.905

Role selection 0.729 0.653 0.689
French Task Precision Recall F-measure
SENSEI (fra) Frame selection 0.967 0.957 0.962

Role selection 0.774 0.847 0.809
ASFALDA Frame selection 0.913 0.897 0.905

Role selection 0.656 0.418 0.510
Italian Task Precision Recall F-measure
SENSEI (ita) Frame selection 0.677 0.561 0.614

Role selection 0.405 0.249 0.308
LUNA Frame selection 0.400 0.590 0.480
(Gold Frames) Role selection 0.760 0.740 0.750

or specific languages (speech/chat). When enough annotated data is available, as for the
DECODA corpus, training an application-specific semantic parser like the one developed in the
SENSEI pipeline, provides good results. However it is not always possible to obtain enough
annotated training data, therefore it is the goal of the Task 3.2 of Work Package 3 to develop
strategies to adapt models to obtain such specialized parsers with less supervision. In the next
Section 2 we describe the general adaptation approaches followed in SENSEI.
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2 General Adaptation Approaches
Two kinds of ‘conversations’ are targeted in SENSEI: spoken conversations in customer ser-
vice telephone call centers and text conversations represented by messages and comments
in social-media platforms and web-chat applications. As much as these two kinds of conversa-
tions are different, they share the lack of in-domain genre specific NLP tools. Thus, both types
of conversations require the adaptation of the existing tools and resources to their domains. In
this section we briefly describe the adaptation approaches followed within the project.

2.1 Adaptation Methods
The followed adaptation approaches are roughly partitioned with respect to two aspects – used
representation – neural or symbolic – and the ‘field’ of adaptation – language or domain.

Adaptation through Translation
English was the main focus of attention of the Natural Language Processing (NLP) community
for years. As a result, there are significantly more annotated linguistic resources in English
than in any other language. Consequently, data-driven tools for automatic text or speech
processing are developed mainly for English. Developing similar corpora and tools for other
languages is an important issue. However, this requires significant amount of effort. Statistical
Machine Translation (SMT) techniques and parallel corpora were used to transfer annotations
from a linguistic resource rich languages to a resource-poor languages for a variety of Natural
Language Processing (NLP) tasks, including Part-of-Speech tagging, Noun Phrase chunking,
dependency parsing, textual entailment, etc. The annotation transfer techniques are insensi-
tive to the nature of ‘annotations’ – manual or automatic output of the NLP tools.

In this deliverable we recall the cross-language semantic parsing methodology defined in Pe-
riod 1 of the project. Since the tools available in English are of general domain, the presented
pipeline was completed with the annotation transfer techniques to the source language (from
English to Italian) and domain adaptation (see Figure 1). The presented methodology is appli-
cable to any NLP task cast as an identification of spans and their labeling.

Adaptation through Re-Ranking
Data-driven NLP techniques are very sensitive to the differences in training and testing condi-
tions. Different domains and genres, such as news-wire written text and call-center conversa-
tion transcripts in Tech Support or Transportation domains, have different distributions of NLP
task-specific properties; thus, the domain adaptation of the source language tools – either the
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development of models with good cross-domain performance or tuning to the target domain –
is critical.

In this deliverable we present the domain adaptation methodology based on re-ranking with in-
domain semantic models – Conditional Random Fields (CRF) and Recurrent Neural Networks
(RNN). The re-ranking is applied both to the output of the general domain semantic parsers
through cross-language methodology and to the output of in-domain semantic parsers in the
source language. The presented methodology is applicable in case in-domain data is available.

Adaptation in Low Dimension Vector-Space Models
Word embeddings have become ubiquitous in NLP, especially when using neural networks.
One of the assumptions of such representations is that words with similar properties have sim-
ilar representation, allowing for better generalization from subsequent models. In the standard
setting, two kinds of training corpora are used: a very large unlabeled corpus for learning
the word embedding representations; and an in-domain training corpus with gold labels for
training classifiers on the target NLP task. Because of the amount of data required to learn
embeddings, they are trained on large corpora of written text belonging to generic domains
such as news or Wikipedia articles. This can be an issue when dealing with specific domain
corpus or non-canonical language, such as spontaneous speech or social-media messages:
embeddings have to be adapted to fit the particularities of specific domains/media.

However the adaptation corpus available for a given speech application can be limited, result-
ing in a high number of words from the embedding space not occurring in the adaptation space.
We present in this deliverable a method for adapting an embedding space trained on a gen-
eral purpose text corpus to a domain-specific corpus of limited size. In particular we deal with
words from the embedding space not occurring in the adaptation data. We report experiments
on a frame-semantic parsing task on spontaneous speech transcriptions collected in a call-
center. We show that our word embedding adaptation approach outperforms state-of-the-art
Conditional Random Field approach when little in-domain adaptation data is available.
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Figure 1: The cross-language and cross-domain adaptation pipeline (common to Sections 3 and 4).
Cross-language adaptation (arrows with index 2 and boxed) consists of translation of the source lan-
guage utterances to English, extraction of multiple semantic interpretations using SEMAFOR semantic
parser in English. Cross-domain adaptation (dotted arrows with index 3) is a re-ranking of the semantic
interpretations by in-domain semantic models in the source language (Italian). Semantic parsing with
in-domain models is shown with dashed arrows with index 1. Components added in Period 2 of the
project are in light-gray.
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3 Cross-Language Adaptation via Statis-
tical Machine Translation

In order to give the context to the cross-language adaptation of FrameNet semantic parsing,
we first describe the semantic parsing task, repeating the description from the deliverable D3.1
(Period 1). Then we proceed to describe the cross-language methodology.

3.1 FrameNet Semantic Parsing
FrameNet semantic parsing is traditionally decomposed into the following sub-tasks:1

1. Identification of trigger words (target word detection), where the goal is to tag words that
potentially trigger semantic frames. For instance, in “she declared to her friend that she
was going out”. The target word declared is identified.

2. Classification of triggered words (target word labeling, frame disambiguation, frame iden-
tification), where the goal is to assign the relevant frame to the trigger word. For example,
the sub-task assigns the frame STATEMENT to the trigger word declared.

3. Role filler identification (frame element detection, boundary detection), where the goal
is to detect/segment the expressions that may fill a frame role (“she”, “to her friend” and
“that she was going out” should be identified as potential role fillers.

4. Role filler classification (frame element labeling), where the goal is to assign the roles
to the role fillers candidates. That is, “she”, “to her friend” and “that she was going
out” are assigned the Speaker, Addressee and Message roles, defined for the frame
STATEMENT, respectively.

The last two subtasks are generally referred to as “semantic role labeling” (SRL). However, the
latter term is more general, as the task is not limited to the frame ‘roles’ defined in FrameNet.
In SENSEI, however, we focus on the FrameNet frames and roles only.

In [12], the authors addressed the last two tasks on the Italian LUNA corpus, and demonstrated
that the approach has satisfactory level of performance (see Table 3, the last two rows). How-
ever, automatic detection and labeling of trigger words has not. Thus, we address the first
two tasks using cross-language methodology with SEMAFOR and compare it to the in-domain
LUNA models.

1As terminology varies, in parentheses we provide alternative names for the sub-tasks.
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Table 3: Performance on the LUNA FrameNet parser [12] on the parsing sub-tasks. Trigger detec-
tion and classification results are reported jointly. Role boundary detection performance is reported
separately and jointly with role classification (i.e. its error is propagated to role classification step.

Task P R F1
Trigger Detection
+ Trigger Classification 0.40 0.59 0.48
Role Detection 0.89 0.86 0.87
+ Role Classification 0.76 0.74 0.75

3.2 Cross-Language Methodology
The cross-language adaptation with machine translation is applied to benefit from existing se-
mantic parsers systems that are available in a language that is rich in resources for training
semantic parsers, such as English. Through cross-language annotation transfer methodology,
it is possible to transfer the semantic interpretation from the target language to the source lan-
guage. However, since some semantic interpretation may be language specific and machine
translation is noisy, a re-ranking mechanism should be utilized that uses semantic models in
the source language.

The cross-language adaptation is performed by applying the following steps (see Figure 1:
arrows with index 2):

1. Statistical Machine Translation (SMT) from the source language to the target language;

2. Semantic parsing in the target language by using the state-of-the-art semantic parser –
SEMAFOR [13];

3. Transferring semantic annotation produced by the parser through statistical word align-
ment or a phrase table (produced at the SMT step);

4. Re-ranking of multiple hypotheses by an in-domain semantic model in the source lan-
guage;

In Figure 1 the pipeline is divided into three segments:

1. default in-domain FrameNet semantic parsing done in the source language for compari-
son with the cross-language methodology (dashed arrows with index 1);

2. cross-language adaptation (arrows with index 2, boxed);

3. cross-domain adaptation through re-ranking (dotted arrows with index 3).

D3.2 Report on the Multi-Domain and Cross-Media Parsing Model
Adaptation | version 1.0 | page 17/44



Table 4: Precision (P), recall (R), and F1 (F1) of the trigger detection and classification performance of
SEMAFOR through cross-language adaptation and in-domain LUNA semantic parser.

P R F1
LUNA 0.40 0.59 0.48
SEMAFOR 0.27 0.28 0.27

In cases when the desired output is just a label and no re-ranking is intended, it is sufficient
to apply Steps 1 and 2. This scenario was evaluated in Period 1 of the project and results are
reported in the deliverable D3.1. Here we shortly remind the process and the obtained results.

For the SMT at Step 1, we have used an off-the-shelf translation system – Google Translate;
and translated the source Italian utterances to English without training in-house SMT systems.
For Step 3 – semantic parsing – the translated utterances are fed into the state-of-the art
semantic parser (SEMAFOR). SEMAFOR is modified to output n-best list, which is re-ranked
using a domain specific semantic model on the source language in Section 4.

In cases when the desired output is a span (labeled or not) or domain adaptation is intended,
Step 3 is required. In Period 2 we trained statistical word alignments using GIZA++[43], and
transferred the annotated output of SEMAFOR to Italian. Alternatively, it is possible to utilize
phrase tables that are produced while training SMT systems using Moses [26].

3.3 Cross-Language Adaptation Results
In Period 1, we have carried out experiments on the frame identification with automatic triggers.
The results are compared to the semantic parser of [12], which is a domain specific parser for
Italian trained on LUNA corpus [14]. The second system is the state-of-the-art general purpose
parser for English, SEMAFOR. SEMAFOR is evaluated by first translating Italian utterances
to English and then running the parser on these translations. Table 4 presents the trigger
detection and classification performance of these systems on LUNA Test Set after removing
domain-specific specific frames (The Test Set for LUNA FrameNet annotation consists of 20
dialogs (1,146 turns) that contain 1,038 frames (145 unique). After removing the corpus-
specific frames we are left with 958 frames (142 unique).)

From the table it is evident that in-domain data trained system outperforms SEMAFOR with
cross-language methodology by 20 points. In the next section we describe the domain adap-
tation of these systems.
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Table 5: Precision (P), recall (R), and F1 (F1) of the oracle trigger detection and classification for
SEMAFOR through cross-language adaptation and in-domain LUNA semantic parser.

P R F1
LUNA 0.82 0.69 0.75
SEMAFOR 0.43 0.36 0.39

4 Cross-Domain Adaptation through Re-
Ranking

The semantic parsing systems – LUNA [12] and SEMAFOR [13] were re-designed such that
they output multiple semantic interpretation hypotheses, i.e. n-best list. In this section we
present the domain-adaptation methodology that re-ranks these n-best lists to identify hy-
potheses that are closer to the domain. The re-ranking is performed using in-domain semantic
models.

As a baseline of the method we consider 1-best system performances given in Table 4. The
upper-bound in re-ranking, on the other hand, is given by the oracle of the generated n-best
list (i.e. the best hypothesis among all available ones). The oracles of the systems are given
in Table 5. Comparing the baseline results from Table 4 and the oracle performances, we
already observe that in-domain baseline is higher than the oracle of SEMAFOR through cross-
language methodology. Thus, in-domain and ‘in-language’ models are always preferable.

In the next sections, we first present the re-ranking methodology with semantic models that
are trained on the source language. Then, we report the results of the re-ranking experiments
of both SEMAFOR and the LUNA semantic parser.

4.1 Source-Language In-Domain Semantic Mod-
els

We have trained two different language-dependent semantic models on LUNA Human-Human
corpus [14]. The first semantic model is based on Conditional Random Fields (CRFs) [29],
which are successfully used in sequence labeling. The second semantic model is a neural
network model that is based on Recurrent Neural Networks (RNNs) [19]. RNNs also have
been applied to sequence labeling and they have also achieved significant improvements in
language modeling [36].

The features used to train the semantic models are extracted by using TextPro Suit [15]. The
features are: tokens, Part-of-Speech (PoS) tags, and Lemmas.
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Figure 2: The RNN architecture of the semantic model. The network takes the current token and
features (Part-of-Speech tags and lemmas) as 1-of-n encoding. It outputs the probability of each frame
in the current context. The recurrent layer models a hidden state for the network.

CRF Semantic Model

The CRF model is built by using the CRF++ toolkit [28]. All the features are independent in the
window of ±1 tokens. The model is trained in a supervised way by using the reference frames
on the training set of the LUNA Human-Human corpus.

RNN Semantic Model

The RNN semantic model is trained over the same features. The RNN semantic model has
the structure that is depicted in Figure 2. It also uses maximum entropy features on word
n-grams that are implemented as direct connections (not shown in the figure) with a hash-
based implementation as given in [33]. PoS and lemma features also have direct connections
to the output layer, however, n-gram features are not used over PoS and lemmas. The RNN
semantic model outputs a probability distribution for frames given the features. It is trained by
using backpropagation through time (BPTT) algorithm [8].
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Table 6: The joint trigger detection and classification performances of the CRF and the RNN semantic
models as precision (P), recall (R), and F1 (F1). Performances of the LUNA parser and SEMAFOR are
provided for comparison.

P R F1
FrameNet Parsers

LUNA 0.40 0.59 0.48
SEMAFOR 0.27 0.28 0.27

Semantic Models
CRF 0.66 0.49 0.56
RNN 0.60 0.54 0.57

4.2 In-Domain Semantic Model Performances
The trigger detection and classification performance of the CRF semantic model and the RNN
semantic model are given in Table 6. As can be seen from the results, the precision of these
models is higher than the LUNA semantic parser that is presented in the previous section.
However, these semantic models have lower recall. The main reason for that is these models
do not use a separate target identification step, and miss more targets than the systems that
implement a separate target detection step (e.g. [12]). We do not consider this a problem,
since these models will be used to re-rank the multiple hypotheses that are generated by the
systems that have a separate target detection step. Also, the F1 of these models are better
than the both LUNA Semantic parser and SEMAFOR via cross-language methodology.

4.3 Re-Ranking Experiments and Results
The re-ranking experiments are performed both on the output of LUNA semantic parser and
of SEMAFOR. Although the re-ranking experiments are originally designed for cross-language
adaptation, to compare both systems we perform re-ranking experiments with the LUNA se-
mantic parser as well.

The re-ranking experiments on SEMAFOR are performed by first translating the utterances
from Italian to English, this step is performed by using an off-the-shelf system, Google Trans-
late. The translated utterances are fed into SEMAFOR and multiple hypotheses are obtained.
The words in the translations are aligned to transfer the semantic interpretation. Finally, the
hypotheses are re-ranked by using the semantic models that are presented in the previous
section. The re-ranking experiments on the LUNA semantic parser, do not include any trans-
lation step. The re-ranking is performed on the multiple hypotheses that the LUNA parser
outputs. The performance of the cross-language adaptation by re-ranking is given in Table 7.
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Table 7: The joint trigger detection and classification performances of the domain-adaptation through
re-ranking using the CRF and the RNN semantic models as precision (P), recall (R), and F1 (F1).

P R F1
LUNA Semantic Parser
CRF 0.64 0.56 0.60
RNN 0.61 0.56 0.58

SEMAFOR
CRF 0.33 0.23 0.27
RNN 0.32 0.23 0.27

As can be seen from the results, re-ranking the LUNA semantic parser improves the perfor-
mance of the system significantly. Although there is a slight drop in the recall, the precision
and the F1 score increase significantly compared to the performance of the LUNA semantic
parser. Performing re-ranking on SEMAFOR improves the precision from 0.27 to 0.32, how-
ever, the recall drops from 0.28 to 0.23. The F1 score of SEMAFOR without re-ranking and
with re-ranking are the same.

4.4 Conclusion and Period 3 Plans
The cross-language methodology with re-ranking does not perform well for the English se-
mantic parser SEMAFOR. However, the Italian LUNA semantic parser improves significantly
with the re-ranking methodology. Also, the re-ranked LUNA parser performs significantly bet-
ter than the domain adapted SEMAFOR parser. Therefore, we abandon the cross-language
adaptation with re-ranking methodology and use the re-ranking methodology for the LUNA
semantic parser. In Period 3 of the project, the improved parser will be used for generating
features for down-stream applications such as discourse parsing.

D3.2 Report on the Multi-Domain and Cross-Media Parsing Model
Adaptation | version 1.0 | page 22/44



5 Cross-Language Adaptation with
Vector-Space Models for Multi-Lingual
Sentiment Analysis

In addition to semantic frame parsing, the Work Package 3 targets also the extraction of polarity
and sentiment from text, especially short texts such as those left as comments or tweets for
the SENSEI social-media use-case. Extracting such information automatically often implies
having lexicons with polarity/sentiment labels. Similarly to frame, if this kind of resource is
easily available for English, it is not the case for other languages with less linguistic resources.

Creating sentiment polarity lexicons is labor intensive. Automatically translating them from
resource-rich languages requires in-domain machine translation systems, which rely on large
quantities of bi-texts, not always available.

In order to overcome this resource issue, in D3.2, we propose to replace machine translation
by transferring words from the lexicon through word embeddings aligned across languages
through a simple linear transform. The approach leads to no degradation compared to machine
translation, when tested on sentiment polarity classification on tweets from four languages.

5.1 Context of this Study
Sentiment analysis is a task that aims at recognizing in text the opinion of the writer. It is
often modeled as a classification problem which relies on features extracted from the text in
order to feed a classifier. Relevant features proposed in the literature span from microblogging
artifacts including hashtags, emoticons [18, 3], intensifiers like all-caps words and character
repetitions [27], sentiment-topic features [49], to the inclusion of polarity lexicons.

The objective of the work presented in this study is the creation of sentiment polarity lexicons.
They are lists of word or phrase lists with positive or negative sentiment labels. Sentiment
lexicons allow to increase the feature space with more relevant and generalizing characteristics
of the input. Unfortunately, creating sentiment lexicons requires human expertise, is time
consuming, and often results in limited coverage when dealing with new domains.

In the literature, it has been proposed to extend existing lexicons without supervision [2, 25], or
to automatically translate existing lexicons from resourceful languages with statistical machine
translation (SMT) systems [5]. While the former requires seed lexicons, the later are very
interesting because they can automate the process of generating sentiment lexicons without
any human expertise. But automatically translating sentiment lexicons leads to two problems:
(1) out-of-vocabulary words, such as misspellings, morphological variants and slang, cannot
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be translated, and (2) machine translation performance strongly depends on available training
resources such as bi-texts.

In this study, we propose to apply the method proposed in [37] for automatically mapping
word embeddings across languages and use them to translate sentiment lexicons only given
a small bilingual dictionary. After creating monolingual word embeddings in the source and
target language, we train a linear transform on the bilingual dictionary and apply that transform
to words for which we don’t have a translation.

We perform experiments on 3-class polarity classification in tweets, and report results on four
different languages: French, Italian, Spanish and German. Existing English sentiment lexicons
are translated to the target languages through the proposed approach, given gs trained on
the respective Wikipedia of each language. Then, a SVM-based classifier is fed with lexicon
features, comparing machine translation with embedding transfer.

5.2 Related Work
Many methods have been proposed for extending polarity lexicons: propagate polarity along
thesaurus relations [16, 47, 20] or use co-occurrence statistics to identify similar words [55, 24].

Porting lexicons to other languages has also been studied: use aligned thesauri and propagate
at the sense level [46, 17], translate the lexicon directly [22, 4], take advantage of off-the-shelf
translation and include sample word context to get better translations [32] use crowd sourcing
to quickly bootstrap lexicons in non-English languages [56].

5.3 Approach
Our approach consists in creating distributional word representations in the source and target
languages, and map them to each other with a linear transform trained given a small bilingual
dictionary of frequent words. Then, source language words from the polarity lexicon can be
projected in the target language embedding. The closest words to the projecting are used as
translation.

In our experiments, word embeddings are estimated on the source and the target language
Wikipedia corpora using the word2vec toolkit [35]. The embeddings are trained using skip-
gram approach with a window of size 7 and 5 iterations. The dimension of the embeddings is
fixed to 200.

[30] have shown that the skip-gram word embedding model is in fact a linear decomposi-
tion of the co-occurrence matrix. This decomposition is unique up to a linear transforma-
tion. Therefore, given two word representations created from the same co-occurrence ma-
trix, a linear transform can be devised to map words from the first to the second. Assum-
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ing that co-occurrence matrices for the source and target languages are sampled from the
same language-independent co-occurrence matrix, one can find a linear transform for map-
ping source words to target words, up to an error component which represents sampling error.
This assumption is realistic for comparable corpora, such as embeddings trained on Wikipedia
in various languages. However, word embeddings represent a mixture from the senses of
each word, making the cross-language mapping non bijective (a word can have multiple trans-
lations), which will probably contribute to the residual. Therefore, it should be reasonable to
train a linear transform to map words between the source and target languages. Note that a
linear transform would conserve the translations associated to linguistic regularities observed
in the vector spaces.

The idea is to translate words in another language in the goal to generate sentiment lexicon.
In [37], the authors propose to estimate a transformation matrix W such that Wx = y, where x

is the embedding of a word in the source language and y is the embedding of its translation in
the target language.

In order to estimate the W matrix, suppose we are given a set of word pairs and their as-
sociated vector representations {xi, yi} where xi is the embeddings of word i in the source
language and yi is the embedding of its translation. The matrix W can be learned by the
following optimization problem:

min

W

X

i

|| Wxi � yi ||2 (1)

which we solve with the least square method.

At prediction time, for any given new word x, we can map it to the other language space by
computing y = Wx. Then we find the words whose representations are closest to y in the
target language space using the cosine similarity as distance metric. In our experiments, we
select all representations which cosine similarity is superior to � (with � = 0.65 set empirically).

In practice, we only have manual translations for a small subset of words, not necessarily
polarity infused, on which we train W . We use that W to find translations for all words of the
sentiment lexicon.

5.4 Experiments

5.4.1 Corpus and Metrics

The sentiment polarity classification task is set as a three-class problem: positive, negative
and neutral. The metrics used to measure performance is macro-F-measure. We developed
our system on French and apply the same components on Italian, Spanish and German. A
concise description of the training data follows.
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The French (FR) corpus comes from the DEFT’15 evaluation campaign 2. It consists of 7,836
tweets for training and 3,381 tweets for testing. The Italian (IT) corpus was released as part of
the SentiPOLC’14 evaluation campaign [6]. It consists of 4,513 tweets for training and 1,930
tweets for testing. For Spanish (ES), the TASS’15 corpus is used [48]. Since the evaluation
campaign was still ongoing at the time of writing, we use 3-fold validation on the training corpus
composed of 7,219 tweets. German (DE) tweets come from the Multilingual Sentiment Data
Set [40]. It consists of 844 tweets for training and 844 tweets for testing.

In order to extract features on those corpora, polarity lexicons are translated from English using
the method described in Section 5.3. The following lexicons are translated:

• MPQA: The MPQA (Multi-Perspective Question Answering) lexicon is composed of 4913
negatives words and 2718 positives words [57].

• BingLiu: This lexicon contains 2006 positive words and 4783 negative words. This
lexicon includes mis-spellings, morphological variants and slang [23].

• HGI: The Harvard General Inquirer (HGI) lexicons contains several dictionaries, we only
used positive and negative lexicons that contains respectively 1915 and 2291 words [53].

• NRC: NRC Emotion Lexicon is a large word list constructed by Amazon Mechanical
Turk [39].

5.4.2 System

In order to test the value of the create lexicons, we use them in a typical sentiment polarity
classification system [38]. We first tokenize the tweets with a tokenizer based on macaon [41].
Then, hashtags and usertags are mapped to generic tokens. Each tweet is represented with
the following features and an SVM classifier with a linear kernel is trained to perform the task.

• Words n-grams

• All-caps: number of words with all characters in upper case

• Hashtags: number of hashtags

• Lexicons: number of words present in each lexicon

• Punctuation: number of contiguous sequences of exclamation marks, question marks,
and both exclamation and question marks

• Last punctuation: whether the last token contains an exclamation or question mark
2
https://deft.limsi.fr/2015/index.php
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Table 8: Results in macro-F-measure obtained on the different languages (French, Italian, Spanish and
German) using different sentiment lexicon (MPQA, BingLiu, HGI and NRC).

FR IT ES DE All
No Sentiment Lexicon 65.83 58.20 59.79 52.84 60.65
[45] 65.97 - - - -
[10] 65.22 57.98 60.61 53.55 60.95 (+0.30 pt)
[31] 65.48 58.20 59.97 - -
Moses (MPQA) 67.51 57.90 60.63 53.28 61.51 (+0.86 pt)
Moses (BingLiu) 67.48 58.13 60.99 52.81 61.70 (+1.05 pt)
Moses (HGI) 66.47 57.58 60.49 53.91 61.16 (+0.51 pt)
Moses (NRC) 66.98 58.27 60.70 54.80 61.56 (+0.91 pt)
BWE (MPQA) 67.38 58.35 60.61 53.24 61.53 (+0.88 pt)
BWE (BingLiu) 66.87 58.25 60.63 52.26 61.33 (+0.68 pt)
BWE (HGI) 66.33 58.14 60.61 55.00 61.34 (+0.69 pt)
BWE (NRC) 66.62 58.31 60.39 56.88 61.45 (+0.80 pt)
Moses + BWE (MPQA) 67.80 58.28 61.13 53.67 61.93 (+1.28 pt)
Moses + BWE (BingLiu) 67.77 58.76 61.00 54.07 61.95 (+1.30 pt)
Moses + BWE (HGI) 66.92 58.09 60.69 53.19 61.41 (+0.76 pt)
Moses + BWE (NRC) 66.73 58.42 61.02 55.23 61.72 (+1.07 pt)

• Emoticons: presence or absence of positive and negative emoticons at any position in
the tweet

• Last emoticon: whether the last token is a positive or negative emoticon

• Elongated words: number of words with one character repeated more than three times,
for example: “loooool”

We did not implement part-of-speech and cluster features as they cannot be assumed to be
available in the target languages.

5.4.3 Results

Table 8 reports the results of the system and different baselines. The No Sentiment Lexicon
system does not have any lexicon feature. It obtains a macro-F-measure of 60.65 on the
four corpora. Systems denoted [45], [10], [31] are baselines that correspond respectively to
unsupervised, supervised and semi-supervised approaches for generating the lexicon. We
observe that adding sentiment lexicons improves performance. The Moses system consists
in translating the different sentiment lexicons with the Moses SMT system. The approach
based on translation obtains better results than the Baseline systems. The BWE (Bilingual
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Word Embeddings) system consists in translating the sentiment lexicons with our method.
This approach obtains results comparable to the SMT approach. Moses and BWE can be
combined by creating a lexicon from the union of the lexicons obtained by those systems. This
combination yields even better results than translation or mapping alone.

5.5 Conclusions
This study is focused on translating sentiment polarity lexicons from a resource-rich language
through word embeddings mapped from the source to the target language. Experiments on
four languages with mappings from English show that the approach performs as well as full-
fledged SMT. While the approach was successful for languages close to English where word-
to-word translations are possible, it may not be as effective for languages where this assump-
tion does not hold. We will explore this aspect for future work.
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6 Cross-Domain and Cross-Media Adap-
tation and OOV Handling with Vector-
Space Models

Representation learning has emerged as a key issue in machine learning, and has led to ma-
jor breakthroughs in computer vision and natural language processing [21, 52]. In particular
researchers in NLP have focused on learning dense low dimensional (hundreds) represen-
tation space of words [35, 9], called embeddings, which model both semantic and syntactic
information [34, 1]. The benefits of such representations is (1) that they offer a lower com-
putational complexity when used as input of classifiers such as neural networks, and (2) that
words with similar properties have similar representations, allowing for better generalization
from subsequent models, e.g. for words not covered by targeted task training data.

In the standard setting of using an embedding space, two kinds of training corpora are used:
a very large unlabeled corpus (Cembed for Corpus Embeddings) on which word representations
are learned, and a smaller in-domain training corpus with gold labels for training classifiers on
the target NLP task (Ctask). It is assumed that Cembed has a much wider coverage than Ctask,
therefore all the words of Ctask should have a representation in Cembed. This assumption is
not always true when the in-domain data are very specific to a given context, or represent a
different register of language than the standard canonical written language (e.g. Wikipedia)
covered by Cembed.

Given a test corpus, some words might not have a representation extracted from Ctask, forcing
the classifier to rely on other features for making its decisions, often leading to mistakes. In this
study, we aim at finding better representations for those Out-Of-Vocabulary (OOV) words, in
order to limit their impact on subsequent tasks for both cross-domain and cross-media adapta-
tion. We devise three types of OOVs: words covered by the task training corpus but not by the
embedding corpus, words covered by the embedding corpus but not by the training corpus,
and words covered by neither corpora.

This study presents a method that addresses these issues by both adapting an embedding
space thanks to a small adaptation corpus, for a specific task, then by generalizing this adap-
tation to all words of the original embedding space, in particular to those not occurring in the
adaptation corpus. Our contributions are as follows:

• Integration of word embeddings in a neural network performing a target task (here, se-
mantic frame tagging)

• Embedding adaptation for words of the target task corpus through refinement (initializa-
tion of a hidden layer with original embeddings before training the neural network)
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Figure 3: Illustration of the proposed adaptation process

• Artificial refinement for those out-of-vocabulary (OOV) words unseen in the target task
training data.

The application framework of this study is the lightly supervised adaptation of a semantic frame
tagger to process spontaneous speech transcriptions with very small amount of annotated
training data and a very large unlabeled text corpus with a language-type mismatch (written
text v.s. spontaneous speech). The proposed approach is illustrated in Figure 3. We show that
our adaptation strategy improves over a state-of-the-art baseline using a CRF tagger when
small amount of data is available to train the models, and when there is a mismatch between
Cembed and the target corpus.

6.1 Related Work
OOV word handling in NLP tasks is dependent on the feature space used to encode data.
Features can be computed from the sequence of characters composing the word (e.g. mor-
phological, suffix and prefix features [51, 50]) in order to steer the classifier’s decision when
the form is unknown. Contextual features try to take advantage of the words in the vicinity of
the OOV, such as n-grams in sequence models; contexts can be gathered in external corpora
or using web queries [54]. OOVs can also be replaced by surrogates which have the same
distributional properties, such as word clusters which have proved to be effective in many
tasks [44]. Relaying on an embedding space for encoding words opens new possibilities for
OOV handling: the availability of large corpora for learning embeddings and methods to pro-
cess them [35] reduces the number of OOVs. For words unknown from the task training corpus
(Ctask) but occurring in the embedding corpus (Cembed), a similarity distance in the embedding
space can be used to retrieve the closest known words and use its characteristics. For words
not in Cembed, a generic OOV model is used. These methods are reviewed and evaluated in [1]
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on a dependency parsing task showing that a small performance gain can be obtained when
little training data is available. We propose in this study to push forward these experiments by
extending the embedding space for all kinds of OOVs, not just for those not in Ctask.

6.2 Different Kinds of Out-Of-Vocabulary Words
One may encounter different kinds of OOV words in an NLP task when using two different
training corpus as we do, one for learning embeddings Cembed and one for learning our model
Ctask (here a POS tagger), and a test corpus for the task at hand Ctest. Three kinds of OOV
words can be defined, as presented in the following table: for instance, an OOV2 word occurs
in Ctask (and of course in Ctest) but not in Cembed.

OOV Cembed Ctask Ctest

OOV1 /2 /2 2
OOV2 /2 2 2
OOV3 2 /2 2

We call hereafter OOV1 the words that do not occur in any training set: OOV2 are words that
do occur in Ctask but not in Cembed; and OOV3 are words that do occur in Cembed but not in Ctask.
These categories are illustrated by Figure 4.

6.3 OOV Handling Strategies
We developed different strategies for processing these three kinds of OOVs. Dealing with an
OOV2 word only requires to initialize its embedding. We propose to use the embedding of the
closest word (nearest neighbour) that belongs to Ctask. We discuss below in 6.3.1 the similarity
we used to select that neighbour.

Dealing with an OOV3 word is more problematic since we would like to know accurately what
would have been its refined embedding �r(w) if it had occurred in Ctask. We propose to ap-
proximate this refinement from the refinement of similar words in Ctask. The underlying idea is
that the refinement step shall smoothly transform the embedding space and that it may be well
approximated locally. In other words, points that are close in the original embedding space will
undergo a similar transformation. To artificially refine an OOV3 word embedding we propose
to apply to its original embedding �0(w) the average transformation of its nearest neighbors.
This processing is described in 6.3.2.

Finally we deal with OOV1 words by successively applying the two processing steps above,
finding an initial embedding and applying an artificial refinement to it.
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Figure 4: Different kinds of Out-Of-Vocabulary words

6.3.1 Setting an Initial Embedding

In this section, we consider words w which belong to Ctest but which do not belong to the
embedding learning corpus (OOV1+2). w 62 Cemb means we cannot provide any proper rep-
resentation encoded into a regular embedding. This lead to errors even when considering
words actually occurring in Ctask. Setting an initial embedding for words w 62 Cemb could be
done by using a unique representation for each of them, either fixed a priori, or learned from
low frequency words in the Cemb corpus[11]. An other option is to assign an individual em-
bedding randomly initialized to each w 62 Cemb. We will use this strategy as a baseline in our
experimental results.

We propose to estimate a relevant embedding representation for each word w 62 Cemb with the
following method:

• retrieving all occurrences of w in Ctask or Ctest

• finding the closest word t of w in Cemb thanks to all the context of occurrence of w

• replacing the unknown embedding of w by the one of t
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The closeness between two words is defined according to the similarity between two distribu-
tions, one for each word, which represent the empirical distribution of occurrence of the word
in all possible contexts (set of K previous words cp and of K following words cf ).

More formally, we consider a word w and all of its occurrences in all possible contexts as
the distribution of n-grams centered on w, where n = 2K + 1. This distribution is defined as�
Pw(cp, cf ), 8(cp, cf ) 2 C

2K
task

 
with:

8(cp, cf ) 2 C

2K
task Pw(cp, cf ) = P (hcp, w, cfi|w) =

counthcp, w, cfi
counthwi (2)

The similarity between two words u and v is computed as the KL-divergence between the
two corresponding distributions. At the end, the embedding of a word w 62 Cemb is set to the
embedding of its closest word t = argmin

u2Cemb\Ctask

DKL(Pw||Pu).

DKL(Pu||Pv) =

X

cp,cf

Pu(cp, cf ) log

Pu(cp, cf )

Pv(cp, cf )
(3)

6.3.2 Artificial Refinement of an Embedding

To simulate the adaptation of an embedding through learning, i.e. to infer the refined embed-
ding of a word t, �r(t), we chose to compute the average transformation of the embedding of
its K nearest neighbours in the original embedding space, (nk)k=1..K , and to apply it to �0(t)

yielding: �r(t) = �0(t) +
PK

k=1 ↵k(�r(nk) � �0(nk)) where the mixing coefficients ↵ are posi-
tive real values that sum to one and which are proportional to the similarity between t and nk

(cosine similarity in our experiments).

6.4 A Neural Network Framework for
Semantic Frame Tagging

We use in this study the RATP-DECODA 3 corpus described in D2.2. It consists of 1514
conversations over the phone recorded at the Paris public transport call center over a period
of two days [7]. The calls last 3 minutes on average, representing a corpus of about 74
hours of signal. The call center dispenses information and customer services, and the two-day
recording period covers a large range of situations such as asking for schedules, directions,
fares, lost objects or administrative inquiries.

3The RATP-DECODA corpus is available for research at the Ortolang SLDR data repository:
http://sldr.org/sldr000847/fr
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Figure 5: Our system is a neural network which takes as input a window of words centered on the word
to label. It is learned to predict the semantic frame label of the word of interest.

The RATP-DECODA has been annotated with semantic frames as presented in deliverable
D3.2. In our experiments, the semantic frame annotations are projected at the word level:
each word is either labeled as null if it is not part of a frame realization, or as the name of
the frame (or frame elements) it represents. In our corpus, 26% of the words have a non-null
semantic label and there are 210 different frame labels. A lot of ambiguities come from the
disfluencies which are occurring in this very spontaneous speech corpus.

We have shown in Section 1.3 that the SENSEI pipeline semantic frame parser obtains good
results when enough training data is available. Our goal in this study is to evaluate our em-
bedding adaptation strategy when little training data is available. In particular for all words
missing in Cemb corpus. To do so we defined a simple Neural Network architecture that takes
these adapted embeddings as input, and predict semantic frame labels for each word as out-
put. In this network the input layer is a lookup layer (also called embedding), that we note �,
which transforms a sequence of words (w1, ..., wT ) to a sequence of low dimensional vectors
(�(w1), ...,�(wT )). The transformation � is initialized with the embedding learned in an un-
supervised fashion using the approach in [35]. It is further fine-tuned during the supervised
training of the neural net on the SLU task.

More concretely, the neural architecture we use is similar to [11] and is illustrated in Figure 5. It
uses a two hidden layers network whose input is a window of 5 successive words in a sentence
centered on the word to label. Its expected output is one of the 211 FrameNet tags.

The first layer is a lookup layer that replaces each word by its embedding representation. This
layer is implemented as a concatenation of 5 parallel hidden layers of size 300, the dimension
of the embedding space, these parameters stand for the word embeddings and can be fine-
tuned during training on SLU targets. This first hidden layer is fully connected to a second
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Table 9: Distribution of words in the test corpus Ctest according to the different training partitions. Of
course, the sum of OOV1+3 and OOV2 words is a constant. As the number of words in the task training
corpus |Ctask| increases, an increasing number of OOV1+3 words become OOV2 words.

Ctask |Ctask| OOV1+3 OOV2

D0 1,667 1250 — 5.24% 1261 — 5.28%
D1 11,273 697 — 2.92% 1814 — 7.60%
D2 23,752 498 — 2.09% 2013 — 8.43%
D3 65,057 203 — 0.85% 2308 — 9.67%
D4 151,910 203 — 0.85% 2308 — 9.67%
D5 230,950 157 — 0.66% 2354 — 9.86%
D6 311,400 140 — 0.59% 2371 — 9.93%
D7 387,689 132 — 0.55% 2379 — 9.96%
D8 477,729 120 — 0.50% 2391 — 10.01%
D9 576,056 108 — 0.45% 2403 — 10.06%

nonlinear hidden layer (256 neurons in our experiments) which is itself fully connected to an
output layer of 211 neurons (one neuron per semantic frame label). This model is learned with
stochastic gradient descent using a log-likelihood criterion. We use dropout regularization with
a firing rate p = 0.5.

6.5 Experiments
The two datasets used in our experiments are the French RATP-DECODA corpus (500K words)
for the in-domain labeled training corpus and the French part of Wikipedia for the unlabeled
Cembed corpus (357M words). The RATP-DECODA corpus [7] collected within the DECODA project
is made of 1514 conversations over the phone recorded at the Paris public transport call center.
We used the same train/test partition as described in [42]. The train section Ctask contains
521K words and the test section Ctest 25K words. In order to test our adaptation strategy with
different sizes of adaptation corpus, we split Ctask into 10 nested sections of similar size from
D0 to D9. Globally the amount of OOV words decreases when the amount of training data
increases, however each section has a different distribution among the three OOV categories
as some OOV1 words (not in Ctask and Cembed) becomes OOV2 (in Ctask but not in Cembed). We
will focus on the following on OOV1+3 (real OOV as not present in the Ctask corpus) and OOV2

(words in Ctask but with no embeddings on which our recovery strategy apply).

Our experimental results are presented in Table 10 and Figure 6. Four systems are compared:

• CRF is a state-of-the-art Conditional Random Field tagger using lexical context of 5
words for predicting the best sequence of FrameNet labels.
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Table 10: Comparative results when only small amount of training data is available (D0, D1) and when
the full training corpus is used (D9)

Train Model F1-score PWA OOV1+3 OOV2

D0

CRF 40.16 78.64 83.20 86.76
CRF++ 45.44 80.67 92.96 87.87
NN 49.90 80.15 76.88 62.01
NN++ 54.15 82.17 91.20 91.91

D1

CRF 56.60 82.67 80.77 90.24
CRF++ 58.13 83.84 92.97 91.73
NN 68.41 86.52 90.82 72.99
NN++ 72.43 88.22 92.11 93.61

D9

CRF 84.63 92.36 81.48 94.09
CRF++ 85.12 92.85 97.22 95.30
NN 86.56 93.13 94.44 81.15
NN++ 90.14 94.87 95.37 95.92

• CRF++ is the same CRF using additional features (Part-Of-Speech, Named-Entities).

• NN corresponds to our Neural Network model described in Section 6.4 using a random
initialization for unseen vectors as baseline.

• NN++ integrates the word embeddings adaptation method proposed in Section 6.3.

As we can see our strategy, which relies on a distributed representation of words to deal with
OOV words, outperforms the CRF tagger, which had no access to external data. The gain is
particularly significant when small amount of training data is available, but even when the full
training corpus is used, we still observe improvements.

Adding POS and NE features improves performance (+1,25 F1-score on average for CRF++),
especially for small corpora as it allows the CRF to generalize better on unseen data. Similarly
we observe a very significant improvement from NN to NN+ by using our adaptation method.
The embedding generation for words w 62 Cemb leads to an average improvement of +3.34
F1-score. These results validate our adaptation approach.

Focusing on the OOV2 and OOV1+3 accuracy, additional features increase the generalization
of the subsequent models. POS and NE features help OOV recognition (6c) in the same way
as embeddings adaptation fills the gap caused by mismatching resources (6b).
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Figure 6: F1-score and per-word accuracy rate (PWA, in %) restricted to OOV2 and OOV1+3 words
as a function of the training corpus size. State-of-art baseline CRF tagger with and without additional
features (POS, Named Entity) v.s. our proposed neural network model with and without adaptation
strategy.
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6.6 Conclusion
The Section dealt with the particular problem of adapting a lexical embedding space to a
specific SLU domain where a large number of application-specific terms do not have any rep-
resentation in the initial vector space. We proposed to adapt lexical embeddings by creating
accurate representations for unknown words: OOV words which do not occur in the SLU train-
ing data and words from the target domain which do not appear in the embedding training
data. We showed on a semantic frame tagging task that our adaptation strategy improves over
a state-of-the-art baseline using a CRF tagger when there is a mismatch between Cemb and
the target corpus, especially when only a small amount of data is available to train the models.
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7 Conclusions
At the end of Period 1, in the deliverable D3.1, we have presented the semantic models and
the parsing methodology developed in WP3 for processing the Human-Human SENSEI con-
versations for social-media and speech data. The different methods for producing semantic
representations were introduced from the three SENSEI languages – English, French, and
Italian – either using corpus-specific or generic tools.

At the end of Period 2, in this deliverable, we have presented cross-languages adaptation
methodology with subsequent cross-domain re-ranking for generic tools in the resource-rich
languages like English and compared this methodology with the re-ranking of the output of
corpus-specific semantic parser. As expected, the use of generic models with or without cross-
language methodology produces lower performance. However, re-ranking of domain-specific
models further improves the performance. Thus, using generic tools with cross-language
methodology is left as the last resort in the case of absence of any in-domain annotated
data. The work presented on adaptation in vector-space models, either cross-language or
cross-domain, opens new pathways for other SENSEI task. In particular, uniform develop-
ment of sentiment lexicons, that are used in speech summarization (WP5), will allow better
comparison of the approaches.

In Period 3 of the project we plan to apply the adapted semantic parsers to discourse parsing
in WP4 and summarization in WP5.
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