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Abstract
Word embeddings have become ubiquitous in NLP, especially
when using neural networks. One of the assumptions of such
representations is that words with similar properties have simi-
lar representation, allowing for better generalization from sub-
sequent models. In the standard setting, two kinds of training
corpora are used: a very large unlabeled corpus for learning
the word embedding representations; and an in-domain training
corpus with gold labels for training classifiers on the target NLP
task. Because of the amount of data required to learn embed-
dings, they are trained on large corpus of written text. This can
be an issue when dealing with non-canonical language, such
as spontaneous speech: embeddings have to be adapted to fit
the particularities of spoken transcriptions. However the adap-
tation corpus available for a given speech application can be
limited, resulting in a high number of words from the embed-
ding space not occurring in the adaptation space. We present
in this paper a method for adapting an embedding space trained
on written text to a spoken corpus of limited size. In particular
we deal with words from the embedding space not occurring in
the adaptation data. We report experiments done on a Part-Of-
Speech task on spontaneous speech transcriptions collected in a
call-centre. We show that our word embedding adaptation ap-
proach outperforms state-of-the-art Conditional Random Field
approach when little in-domain adaptation data is available.
Index Terms: word embeddings, deep neural network, sponta-
neous speech, POS tagging.

1. Introduction
Representation learning has emerged as a key issue in machine
learning, and has led to major breakthroughs in computer vision
and natural language processing [1, 2]. In particular researchers
in NLP have focused on learning dense low dimensional (hun-
dreds) representation space of words [3, 4], called embeddings,
which model both semantic and syntactic information.

The benefits of such representations are (1) that they offer
a lower computational complexity when used as input of clas-
sifiers such as neural networks, and (2) that words with similar
properties have similar representations, allowing for better gen-
eralisation from subsequent models, e.g. for words not covered
by targeted task training data. This strategy has been applied
successfully for many classical NLP tasks such as information
retrieval, language modelling [5], machine translation [6], as
part-of-speech tagging, named entity recognition [7], syntactic
parsing [8, 9], semantic role labeling [10], etc.

In the standard setting of embedding space usage, two kinds
of training corpora are used: a very large unlabelled corpus
(Cemb for embedding corpus) on which word representations

are learned, and a smaller in-domain training corpus with gold
labels for training classifiers on the target NLP task (Ctask).
It is assumed that the syntactic/semantic contexts learned in
Cemb are coherent with those of the in-domain corpus, and
since Cemb has a much wider coverage than Ctask, therefore
all the words of Ctask should have a representation in Cemb.

When the adaptation corpus represents a different register
of language than the standard canonical written language (e.g.
Wikipedia) covered by Cemb, these assumptions are not neces-
sarily true. This is the case when embeddings are used to pro-
cess spontaneous speech transcriptions of a specific domain for
which few manual transcriptions are available. This situation
is rather usual when processing call-centre data considering the
difficulties of collecting and transcribing human-human conver-
sations for each use-case.

If no adaptation is performed, embeddings learned on writ-
ten text might be too far from word contexts found in sponta-
neous speech. For instance, words like “yes” or “no” are seldom
used in written text while they a very frequent in dialogs. Other
words, such as “like” change their most common use between
text (preposition, noun, verb) and speech (adverb). Even by
adapting embeddings on the Ctask corpus, because of its small
size, only a small portion of the embedding space will be af-
fected.

This paper presents a method that addresses these issues by
both adapting an embedding space thanks to a small adaptation
corpus, for a specific task, then by generalizing this adaptation
to all words of the original embedding space, in particular to
those not occurring in the adaptation corpus. Our contributions
are as follows:

• Integration of word embeddings in a neural network per-
forming a target task (here, part-of-speech tagging)

• Embedding adaptation for words of the target task corpus
through refinement (initialization of a hidden layer with
original embeddings before training the neural network)

• Artificial refinement for those out-of-vocabulary (OOV)
words unseen in the target task training data.
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Figure 1: Illustration of the proposed adaptation process



The applicative framework of this paper is the lightly super-
vised adaptation of a POS tagger to process spontaneous speech
transcriptions with very small amount of annotated training data
and a very large unlabelled text corpus with a language-type
mismatch (written text v.s. spontaneous speech). The proposed
approach is illustrated in Figure 1.

Processing spontaneous speech is challenging: disfluencies
and oral-specific syntactic constructs lead to a drop in perfor-
mance when using models trained for written text. Although
the task targeted is Part-Of-Speech tagger, the strategies pro-
posed are task-independent and don’t make any assumptions of
the kinds of label to predict.

We show that our adaptation strategy improves over a state-
of-the-art baseline using a CRF tagger when small amount of
data is available to train the models, and when there is a mis-
match between Cemb and the target corpus.

2. Related work
OOV word handling in NLP tasks is dependent on the feature
space used to encode data. Features can be computed from the
sequence of characters composing the word (e.g. morphologi-
cal, suffix and prefix features [11, 12]) in order to steer the clas-
sifier’s decision when the form is unknown. Contextual features
try to take advantage of the words in the vicinity of the OOV,
such as n-grams in sequence models; contexts can be gathered
in external corpora or using web queries [13]. OOVs can also be
replaced by surrogates which have the same distributional prop-
erties, such as word clusters which have proved to be effective
in many tasks [14].

Relaying on an embedding space for encoding words
opens new possibilities for OOV handling: the availability of
large corpora for learning embeddings and methods to process
them [3] reduces the number of OOVs. For words unknown
from the task training corpus (Ctask) but occurring in the em-
bedding corpus (Cemb), a similarity distance in the embedding
space can be used to retrieve the closest known words and use
its characteristics.

For words not in Cemb, a generic OOV model is used.
These methods are reviewed and evaluated in [9] on a depen-
dency parsing task showing that a small performance gain can
be obtained when little training data is available. We propose in
this paper to push forward these experiments by extending the
embedding space for OOVs not in Ctask.

3. Embeddings adaptation for POS tagging
of spontaneous speech

Our work aims at learning a Neural Network for POS tag-
ging where the input layer is a lookup layer (also called em-
bedding), that we note Φ, which transforms a sequence of
words (w1, ..., wT ) to a sequence of low dimensional vectors
(Φ(w1), ...,Φ(wT )). The transformation Φ is initialized as the
embedding learnt using the approach in [3], noted Φ0. It is fur-
ther refined during the supervised training of the neural net on
the POS tagging task. We note Φr the (refined) final embed-
ding.

The neural net architecture we use is similar to [10] and is
illustrated in Figure 2. It is a two hidden layers net whose input
is a window of 5 successive words in a sentence and morpho-
logical features about the word of interest. As morphological
features, we consider three boolean values about capitalisation,
number and non alpha-numeric characters presence. In addi-
tion, we also use a word representation based on a bag of char-

Figure 2: Our system is a neural network which takes as input
a window of words centered on the word to label and morpho-
logical features associated to the word of interest. It is learnt to
predict the part-of-speech tag of the word at the middle of the
input window.

acter bi-grams. For example, the word “boat” is represented as
〈bo, ba, bt, oa, ot, at〉 . In order to restreint the dimension of
this representation, we only consider most frequent bi-grams,
covering 90% of occurrences.

The first layer is a lookup layer that replaces each of these 5
words by their embedding. It is implemented as a concatenation
of 5 parallel hidden layers of size 200, which is the dimension
of the embedding space. Each of these hidden layers has a huge
input layer whose size equals the size of the vocabulary, they
share the same set of weights. The input vector corresponding
to a particular word is a sparse vector, with a 1 at the word
position number and null otherwise. For a given input windows
of 5 words the hidden layer is then a vector of size 5×200. The
embedding of the ith word of the vocabulary is then encoded in
the weights from the ith input neuron to the hidden layer. This
first hidden layer is fully connected to a second nonlinear hidden
layer (in our experiments it has 256 neurons) which is itself
fully connected to an output layer with 20 neurons (one neuron
per par-of-speech tag, i.e. per class). We note θ = (W,E) the
set of parameters of the whole model, whereE is the embedding
space whileW corresponds to every other neural network layers
weights.

We use softmax outputs which means that the actual outputs
of this neural net for a given input x, fθ(x) = ([fθ(x)]i)i=1..N

(where N stands for the number of classes) and [fθ(x)]i is the
ith component of the output vector fθ(x) corresponding to the
score for the ith class, are normalized to sum to 1 and may be in-
terpreted as probabilities p(i|x,W,E). The neural net is trained
using a training set T of pairs (x, y) of (window of words, POS
tag) to maximize a log-likelihood criterion:

θ̂ = argmax
(W,E)

∑
(x,y)∈T

log p(y|x,W,E)

where x corresponds to a word window and its associated mor-
phological features, and y represents the corresponding tag.
Optimization is performed through stochastic gradient descent
(SGD), i.e. by iteratively selecting a random sample (x, y) and



making a gradient step :

θ ← θ + λ
∂ log p(y|x,W,E)

∂θ
,

where λ is the learning rate. In this way, backpropagating the
gradient through the whole network yield refined embeddings
which become more and more task/domain-specific all along
the training, from Φ0 to Φr . This may be especially interesting
when the corpus used for learning embedding is different from
the one used to learn the task-specific model (POS tagging in
our case).

4. Artificial refinement of an OOV
embedding

The embedding refinement method proposed in the previous
section can only be applied to words belonging to the adaptation
corpus. All the other words remain unchanged. This is often the
case when dealing with supervised learning since annotated cor-
pora are expensive to produce and are therefore much smaller
than those used for learning word embeddings as in [3].

This yields to an heterogeneous embedding space where
some word embeddings have been tuned while others have not.
Let note Vemb, Vtask and Vtest the vocabulary used for learning
embeddings, for learning the POS tagger and the vocabulary
one may encounter in tests. Because the embedding corpus is
usually very large we will be very likely to have Vtask ⊆ Vemb,
Vtest ⊆ Vemb. However at the same time many words may oc-
cur in test while not being in the training corpus, as illustrated
by figure 1.

We propose here to artificially refine these OOV embed-
dings. In order to do so, we simulate the refinement of a word
t embedding, Φ0(t), thanks to its K nearest neighbours in the
original embedding space. We make the hypothesis that if word
t occurs in the POS tagging training set Ctask, it would have
been refined in a similar way than its closest words in the origi-
nal embedding space.

Let note (nk)k=1..K theK words from Vemb∩Vtask whose
initial embeddings Φ0(nk) are the closest to Φ0(t). These word
embeddings have been shifted from (Φr(nk) − Φ0(nk). We
propose to compute an artifical refinement Φr(t) as a weighted
sum of the shifts applied to its nearest neighbours.

Φr(t) = Φ0(t) +

K∑
k=1

αk(Φr(nk)− Φ0(nk))

where the mixing coefficients α are positive real values that sum
to 1. In our experiments we define these coefficients as being
proportional to the cosine similarity s between t and nk:

s(t, nk) =
Φ0(t) · Φ0(nk)

|Φ0(t)| × |Φ0(nk)|

5. Experiments
The two datasets used in our experiments are the French RATP-
DECODA corpus (546K words) for the in-domain labelled cor-
pus and the French part of Wikipedia for the unlabelled Cemb

corpus (357M words). The RATP-DECODA corpus [15] col-
lected within the DECODA project is made of 1514 conver-
sations over the phone recorded at the Paris public transport
call center. We used the same train/test partition as described
in [16].

The train section Ctask contains 521K words and the test
section Ctest 25K words. In order to test our adaptation strat-
egy with different sizes of adaptation corpus, we splitCtask into
5 sections: D10 contains only the first 10 dialogs (in chronolog-
ical order) of Ctask, D50 the first 50 dialogs and D100 the first
100 dialogs. Finally Dall contains the whole training corpus.

For each partition we have 4 kinds of words in the test cor-
pus, described in Table 1.

Vtask Vemb Vtest

W1 X X X
W2 X X
W3 X X
W4 X

Table 1: Categorization of words in Vtest

W4 are the full Out-Of-Vocabulary words, only occurring
in the test corpus; W3 and W2 are partial OOVs since they
belongs either to Vtask or Vemb. The amount of W2 and W4
words decreases when the amount of training data increases.
The adaptation strategy presented in this study is focusing on
W1 and W2 words: W1 words are adapted according to the
method presented in section 3; W2 words are adapted with the
artifical refinement method of section 4. Table 2 presents the
distributions of words for the 4 training corpus sections.

Ctask |Ctask| W1 W2 W3 W4
D10 1,662 18,323 5,025 709 1,336
D50 10,833 21,189 2,159 1,131 914
D100 23,251 21,808 1,540 1,285 760
Dall 521,377 23,083 265 1,562 483

Table 2: Distribution of words in the test corpusCtest according
to the different training partitions

Our experimental results are presented in Table 3 and in
Table 4. Four systems are compared:

• CRF is a state-of-the-art Conditional Random Field
tagger using lexical context as well as morphological
features for predicting the best sequence of POS la-
bels while handling OOVs. This tagger is part of the
MACAON NLP tool suite [17] and has already been used
on spoken data in [16]. This tagger is used as a baseline
system.

• NN corresponds to our neural network without the em-
bedding refinement process. In this system, words em-
beddings are used as input but are not part of trainable
parameters (only W weights are trained).

• NN+ER integrates the word embeddings refinement
method proposed in section 3. OOV embeddings are
kept to their original values.

• NN+ER+AER is our full system, where known words
embeddings are naturally refined through the neural net
training while OOV embeddings are artificial refined as
described in previous section.

As we can see, our OOV handling strategy systematically
outperforms the CRF standard one. The gain is particularly sig-
nificant when very small amount of training data is available
(D10 and D50), but even when the full training corpus is used,
we observed improvements.



Train Model All W1 W2

D10
CRF 12.33 5.6 32.6
NN+ER+AER 10.28 5.1 21

D50
CRF 5.81 4.2 18
NN+ER+AER 5.62 3.8 11.2

D100
CRF 4.74 3.8 15.2
NN+ER+AER 4.81 3.5 12

Dall
CRF 3.18 3 10.9
NN+ER+AER 3.27 3 8.7

Table 3: POS error rate (in %) computed on all the test set
(All) or restricted to W1 and W2 categories as a function of the
training corpus size. State-of-art baseline CRF tagger v.s. our
proposed neural network model

Train Model All W1 W2

D10

NN 13.01 5.7 34.5
NN+ER 10.55 5.1 22.5
NN+ER+AER 10.28 5.1 21

D50

NN 6.25 4.1 17.5
NN+ER 5.78 3.8 12.4
NN+ER+AER 5.62 3.8 11.2

D100

NN 5.08 3.7 15.8
NN+ER 4.89 3.5 12.9
NN+ER+AER 4.81 3.5 12

Dall

NN 3.32 3.1 10.6
NN+ER 3.29 3 9.8
NN+ER+AER 3.27 3 8.7

Table 4: POS error rate (in %) as a function of the training
corpus size and of the learning strategy. NN is a neural net-
work with constant embeddings unlike NN+ER where embed-
ding are refined over time but without OOV handling strategy.
NN+ER+AER correspond to our full system with embedding
refinement and OOV embedding artificial refinement.

However, as the proportion of OOV in the test corpus de-
creases when the size of the training corpus increases, the over-
all gain is modest. Furthermore, we did not present results about
OOV words without embeddings (categories W3 and W4) be-
cause it is orthogonal to our approach but it probably explains
the CRF slightly better overall performance w.r.t. our system.
An interesting line of future work will be to take these kind of
OOVs into account with a specific process in order to close this
gap.

Contrastive results are given in table 4. We check the im-
provement obtained with each refinement method. The em-
bedding refinement (ER) method leads to significant overall
improvements when considering small training data (D10 and
D50). The artificial embedding refinement (AER) method pro-
vides a constant gain over OOV recognition performance, even
when the whole training corpus is used. These results validate
our adaptation approach.

6. Conclusion
Processing spontaneous speech is challenging: disfluencies and
oral-specific syntactic constructs lead to a drop in performance
when using models trained for written text. We show in this
study that our OOV processing strategies can help when a small
amount of data is available to train the models and/or when there

is a mismatch in the language style between the corpus used to
learn the embeddings and the target corpus.

An interesting line of future work will be to add tag se-
quence global optimisation, using Recurrent Neural Network
architectures and Long-Short Term Memory neurons, instead of
considering independently each word in a sequence. Moreover,
we plan to investigate the relevance of our approach on larger
corpora and on more difficult NLP tasks such as syntactic pars-
ing and semantic role labelling.
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