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Abstract
Word error rate (WER) is not an appropriate metric for spoken
language systems (SLS) because lower WER does not neces-
sarily yield better understanding performance. Therefore, lan-
guage models (LMs) that are used in SLS should be trained to
jointly optimize transcription and understanding performance.
Semantic LMs (SELMs) are based on the theory of frame se-
mantics and incorporate features of frames and meaning bearing
words (target words) as semantic context when training LMs.
The performance of SELMs is affected by the errors on the
ASR and the semantic parser output. In this paper we address
the problem of coping with such noise in the training phase of
the neural network-based architecture of LMs. We propose the
use of deep autoencoders for the encoding of semantic con-
text while accounting for ASR errors. We investigate the op-
timization of SELMs both for transcription and understanding
by using deep semantic encodings. Deep semantic encodings
suppress the noise introduced by the ASR module, and enable
SELMs to be optimized adequately. We assess the understand-
ing performance by measuring the errors made on target words
and we achieve 3.7% relative improvement over recurrent neu-
ral network LMs.
Index Terms: Language Modeling, Semantic Language Mod-
els, Recurrent Neural Networks, Deep Autoencoders

1. Introduction
The performance of automatic speech recognition (ASR) sys-
tems is measured by word error rate (WER). However, in the
literature the use of WER has been criticized because of its na-
ture of poorly capturing the understanding performance [1, 2].
Therefore, a joint optimization over transcription and under-
standing must be employed by accounting the semantic con-
straints. The most notable LMs that consider semantic con-
straints are the latent semantic analysis (LSA) work in [3] and
the recognition for understanding LM training in [1].

Deep autoencoders can be used to reduce the dimensional-
ity of data with higher precision than principle component anal-
ysis [4]. In addition, it has been observed that deep autoen-
coders outperform LSA for document similarity tasks. Seman-
tic hashing [5] is a method for document retrieval that maps doc-
uments to binary vectors such that the Hamming distance be-
tween two vectors represents the similarity between those doc-
uments. Also deep denoising autoencoders are shown to learn
high-level representations of the input which improves the per-
formance of digit recognition systems [6].

Semantic LMs (SELMs) we present in this paper are neural
network LMs (NNLMs) [7] that learn distributed representa-
tions for words. The architecture of SELMs are similar to the
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context dependent recurrent NNLMs (RNNLMs) that use recur-
rent connections as a short-term memory and embody a feature
layer [8]. SELMs are based on the theory of frame semantics
and model the linguistic scene based on either the target word or
the frame features that are evoked in the utterance [9]. The lin-
guistic scene is obtained from the ASR hypothesis and affected
by the ASR noise. The noise can be reduced by pruning the er-
roneous frames [9]. However, this prevents the model to capture
the whole linguistic scene, and also this may not be performed
well for the unseen data. In this paper, we propose to use deep
autoencoders to encode frames and targets in a noisy representa-
tion for handling the ASR noise and to optimize SELMs for the
whole linguistic scene. We show that SELMs can be utilized for
optimizing spoken language systems both for the transcription
and the understanding performance.

2. Semantic LMs
Traditional LMs model words as sequence of symbols and do
not consider any linguistic information related to them [10].
Hence, they fail to capture semantic relationships between the
words and the semantic context of utterances. SELMs [9] over-
come this problem by incorporating the semantic context of
utterances into the LM. SELMs are based on the theory of
frame semantics developed in the FrameNet project [11]. In
FrameNet, word meanings are defined in the context of se-
mantic frames which are evoked by linguistic forms called tar-
get words or targets [11]. The other words that complete the
meaning in frames are called frame elements. The following
shows an example of a semantic frame: “Lee sold a textbook
to Abby”. In this example, the target word “sold” evokes the
frame “COMMERCE-SELL”, and the “buyer” frame element
is filled with the phrase “to Abby”. SELMs use frames and
targets for semantic information. For automatic extraction of
frames and targets from utterances, we have used the open-
source frame-semantic parser, SEMAFOR [12]. SEMAFOR
performs semantic parsing by first recognizing targets with a
rule-based system, then by identifying frames by using a statis-
tical model. At the final step, frame elements are filled by using
another statistical model. SEMAFOR relies on the output of a
statistical dependency parser. The reader may refer to [12] for a
detailed description of SEMAFOR.

The performance of ASR can be improved by re-scoring an
n-best list of hypotheses by using a more advanced LM than
the one that is used for decoding. There may be various ways
to select the hypotheses during re-scoring. Figure 1 shows the
transcription versus the understanding performance for possible
different selections of hypotheses. We measure the understand-
ing performance by target error rate (TER), which is calculated
from the errors made on target words that are the main meaning
bearing elements of semantic frames. If the sole purpose of im-
proving the performance is to optimize with respect to the tran-



scription performance (WER), one may not improve the under-
standing performance (TER). Hence, LMs for re-scoring must
be built to jointly optimize the transcription and the understand-
ing performance.
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Figure 1: Scatter plot of transcription performance (WER) ver-
sus understanding performance (TER) for random selections of
hypotheses from the 100-best list of the development set of Wall
Street Journal corpus.

SELMs incorporate semantic information over the frames
evoked and the targets occur in an utterance. In this respect,
they are well suited for optimizing both the recognition and
the understanding performance jointly. SELMs are based on
the context-dependent RNNLM architecture given in [8]. The
connection between the feature layer and the hidden layer is
removed because semantic encodings are high level representa-
tions. In this paper, we introduce SELMs which use deep se-
mantic encodings of frames and targets as the semantic context.
The structure of SELMs are given in Figure 2. The SELMs we
have used have a class-based implementation that estimates the
probability of the next word by factorizing them into class and
class membership probabilities. The current word is fed into
the input layer by 1-of-n encoding. The semantic layer uses
the semantic encoding for the current utterance. SELMs are
trained by using the backpropagation through time algorithm,
which unfolds the network for N time-steps back for the re-
current layer and updates the weights with the standard back-
propagation [13]. SELMs also use n-gram maximum entropy
features which are implemented as direct connections between
n-gram histories and the output layer. The implementation ap-
plies hashing on the n-gram histories as given in [14].

3. Deep semantic encodings
A binary vector that is used in semantic hashing [5], compared
to a continuous vector, introduces noise to the high-level rep-
resentation of the document. For that reason, it is suitable to
be used as a noisy representation of semantic information for
utterances. This section describes how the training of deep au-
toencoders is performed for obtaining deep semantic encodings
for utterances.

The training of the deep autoencoder is done in two phases
as given in [5]. The phases of training is depicted in Figure 3.
The input is represented with normalized bag-of-words (BoW)
vectors of frames and targets in both of the phases. The first
phase is the unsupervised pretraining phase for finding a good
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Figure 2: The class-based SELM structure. The network takes
the current word wt and the semantic encoding for the current
utterance as input. The output layer estimates the probability
for the next word wt+1 factorized into class probabilities and
class-membership probabilities (clt+1 denotes the recognized
class for the next word). The direct connections for the n-gram
maximum entropy features are not shown.

initialization of the weights. For this purpose the greedy layer-
by-layer training [15] is performed. In this approach, each
pair of layers are modeled by Restricted Boltzmann Machines
(RBMs) and each RBM is trained from bottom to top. During
the pretraining phase the bottom RBM (RBM 1) is modeled by
a Constrained Poisson Model as given in [5]. Therefore, unnor-
malized BoW vectors are used only when computing the activa-
tions of the hidden layer, and the softmax activation function is
used for the reconstruction of the input as the normalized BoW
vector. The other RBMs use the sigmoid function as the activa-
tion function. The network is pretrained by using the single-step
contrastive divergence [16]. In the second phase, the network is
unrolled as shown in Figure 3, so that the network reconstructs
the input at the output layer. The output layer uses the softmax
function and reconstructs the normalized BoW input vector, the
other layers use the sigmoid activation function. The backprop-
agation algorithm is used to fine-tune the weights by using the
reconstruction error at the output layer. The codes at the “code
layer” is made binary by using stochastic binary units at that
layer i.e. the state of each node is set to 1 if its activation value
is greater than a random value that is generated at run time; or
set to 0 otherwise. This state value is used for the forward-pass.
However, when backpropagating the errors the actual activation
values are used. After training the autoencoder, deep semantic
encodings can be obtained only by using the bottom part of the
network (the part inside the dashed box in Figure 3).

4. Wall Street Journal (WSJ) experiments
We present the performance of SELMs on N-best re-scoring ex-
periments on the WSJ speech recognition task. The re-scored
hypotheses are evaluated on both recognition performance
(WER) and the target error rate (TER), a proxy for under-
standing performance. All of the experiments presented in this
section are performed on the publicly available WSJ0/WSJ1
(DARPA November’92 and November’93 Benchmark) sets.
All the development data under WSJ1 for speaker independent
20k vocabulary is used as the development set (“Dev 93” - 503
utterances). The evaluation is done on the November 92 CSR
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Figure 3: The training phases of the autoencoder for deep se-
mantic encodings. The bottom part of the fine-tuned network
(dashed box) is used to obtain semantic encodings.

Speaker independent 20k NVP test set (“Test 92” - 333 utter-
ances) and on the November 93 CSR HUB 1 test set (“Test 93”
- 213 utterances).

4.1. ASR baseline

The baseline ASR system is trained by using the Kaldi speech
recognition toolkit [17]. The vocabulary is the 20K open vocab-
ulary word list for non-verbalized punctuation that is available
in WSJ0/WSJ1 corpus. The language model that the baseline
system uses is the baseline tri-gram backoff model for 20K open
vocabulary for non-verbalized punctuation which is available in
WSJ0/WSJ1 corpus. The acoustic models are trained on the SI-
284 set, by using the Kaldi recipe with the following settings.
MFCCs features are extracted and spliced in time with a con-
text window of [−3,+3]. Linear discriminant analysis (LDA)
and maximum likelihood linear transform (MLLT) are applied.
Triphone Gaussian mixture models are trained over these fea-
tures. The system performs weighted finite state decoding. We
have extracted 100-best lists for both the development set and
the evaluation sets. The performance of the ASR baseline is
given in Table 1.

Table 1: The ASR baseline recognition performance (WER) on
Dev 93, Test 92, and Test 93 sets.

Dev 93 Test 92 Test 93
ASR 1-best 15.3% 10.2% 14.0%
Oracle on 100-best 8.3% 5.1% 7.3%

4.2. Re-scoring Experiments

The re-scoring experiments are performed on the 100-best lists
that are obtained from the ASR baseline system. We have re-
scored these 100-best lists by using the SELMs that are trained
on frames and targets separately. In addition we have trained a
RNNLM model and a 5-gram model with modified Kneser-Ney
smoothing with singleton cut-offs. All models are trained on
the whole WSJ 87, 88, and 89 data with the vocabulary that is
limited to the 20K open vocabulary for non-verbalized punctua-

Table 2: The WER performance for frame encoding models
(SELM - Frame Enc.) target encoding models (SELM - Target
Enc.). SELMs use ASR encodings (ASR Enc.) and reference
encodings (Ref Enc.). The actual performance is given in bold.
Language Model Dev 93 Test 92 Test 93
KN5 14.6% 9.7% 13.3%
RNNME 13.4% 8.8% 12.7%
(1) SELM - Frame Enc.

ASR Enc. 13.6% 8.4% 12.6%
Reference Enc. 13.6% 8.4% 12.3%

(2) SELM - Target Enc.
ASR Enc. 13.4% 8.7% 12.0%
Reference Enc. 13.2% 8.6% 11.9%

(1) + (2) (Lin. Interpolation)
ASR Enc. 13.3% 8.5% 12.0%
Reference Enc. 13.2% 8.4% 11.8%

tion. Therefore, the LMs used for re-scoring includes a 5-gram
modified Kneser-Ney model with singleton cut-offs (KN5), a
RNNLM model that has 200 nodes in the hidden layer and uses
a maximum-entropy model that has 4-gram features with 109

connections (RNNME). RNNME uses 200 word classes that
are constructed based on the frequencies of words, however the
KN5 do not contain any classes.

The SELMs use semantic encodings of frames and targets.
The frames and targets for the LM training data is obtained us-
ing the SEMAFOR semantic parser. We use the most frequent
frames and targets that cover the 80% of the training corpus
i.e. 184 distinct frames and 1184 distinct targets. For obtain-
ing deep semantic encodings, we have trained autoencoders of
size (184-200-200-12) for frames and of size (1184-400-400-
12) for targets. Pretraining is performed for 20 iterations with a
mini-batch size of 100 over the frames and targets. Fine-tuning
is performed by using stochastic gradient descent by consid-
ering the reconstruction error on the development set (Dev93)
to avoid overfitting by adjusting the learning rate and by early
stopping.

ASR

1
st

-B
e

st
 

H
yp

o
th

e
si

s

Semantic Parser

SELM

N-Best List

Semantic 
Encoding

Best 
Hypothesis

Test 
Utterance

Deep Autoencoder
Bag-of-words

frames or targets

Figure 4: The SELM re-scoring diagram. The test utterance is
fed into the ASR. The 1st-best ASR hypothesis is passed through
the semantic parser and BoW features are given to the autoen-
coder for extracting semantic encodings for the test utterance.
The n-best list is re-scored by using the SELM that uses the se-
mantic encoding as the semantic context for the test utterance.

The SELMs are trained by using either frame encodings
or target encodings that are obtained with the autoencoders.
The SELMs have the same configuration with the RNNME
model, i.e. they have 200 nodes in the hidden layer and use
a maximum-entropy model that has 4-gram features with 109

connections. They also use the same word classes. All NNLMs
(RNNME and SELMs) are initialized with the same random
weights to make the experiments more controlled. In addition
to that, the training of all NNLMs are done by using the same
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(a) Reference Encodings

RNNME - WER: 10.3%
(1) SELM Frame Enc. - WER: 9.9%
(2) SELM Target Enc. - WER: 9.9%
(1) + (2) (Lin. Interpolation) - WER: 9.7%
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(b) ASR Encodings

RNNME - WER: 10.3%
(1) SELM Frame Enc. - WER: 10.2%
(2) SELM Target Enc. - WER: 10.1%
(1) + (2) (Lin. Interpolation) - WER: 9.8%

Figure 5: TER of LMs at various coverages of target words: (a) SELMs with reference encodings, (b) SELMs with ASR encodings
(actual performance). SELMs with reference encodings consistently perform better than RNNME. The target encodings suppress the
ASR noise more robustly than the frame encodings. The linear interpolation of the SELMs performs the best.

randomization of the training data. Since the training data is
randomized we have built independent sentence models i.e. the
state of the network is reset after each sentence. Dev93 is used
to adjust the learning rate and for early stopping.

The flow of the re-scoring experiments for SELMs are
shown in Figure 4. The ASR 1st-best hypothesis is passed
through SEMAFOR to extract frames and targets, then deep
semantic encodings are obtained by feeding them into the rel-
evant autoencoder. Therefore, when re-scoring an utterance,
semantic encodings for the whole utterance that is based on
the 1st-best ASR hypothesis is used. To see how much ASR
noise degrades the performance we have also performed re-
scoring experiments by using the semantic encodings of the
reference transcriptions. Apparently, the actual performance is
given when the ASR hypothesis is used. Hence, we present
two results for SELMs, 1) ASR encodings, refers to the actual
performance, where the ASR 1st-best hypotheses are used for
the semantic encodings, 2) Reference Encodings, where the ref-
erence transcriptions are used for the semantic encodings. In
addition, we present the linear interpolation of the two SELMs
on frame encodings and target encodings with equal weights.
The WER performance of all the models are given in Table 2.
The SELMs have a better WER performance than RNNME on
the test sets. We observe that target encodings are more robust
to noise than frame encodings. In addition, the linear interpola-
tion of SELMs achieve 4.9% relative improvement in WER for
the combination of “Test 92” and “Test 93” sets over RNNME.

4.3. Target Recognition Performance

WSJ corpus is designed for the speech recognition task, and it
does not have any gold standards for measuring the understand-
ing performance. Therefore, we evaluate our models on the tar-
gets recognized by the automatic semantic parser on the refer-
ence transcriptions of the development and evaluation sets. The
target error rates (TER) of all models are given in Table 3. Also
we analyze the error rate on the most frequent targets that cover
the 60%, 80%, and 100% of the training corpus. We present re-
sults on the combination of “Test 92” and “Test 93” evaluation
set in Figure 5. Both results show that if accurate semantic con-

text (reference encodings) is used SELMs are consistently good
at optimizing the performance both in terms of WER and TER.
When ASR encodings are used the ASR noise affects the TER
performance slightly, especially the SELMs with frame encod-
ings. The target encodings, on the other hand, are more robust
to noise. The linear interpolation of SELMs achieves 3.7% rel-
ative improvement in TER over RNNME.

Table 3: The TER performance for frame encoding models
(SELM - Frame Enc.) and target encoding models (SELM -
Target Enc.). SELMs use ASR encodings (ASR Enc.) and refer-
ence encodings (Ref Enc.). The actual performance of SELMs
are given in bold.
Model Dev 93 Test 92 Test 93
KN5 13.4% 10.4% 13.2%
RNNME 12.7% 9.6% 12.6%
(1) SELM - Frame Enc.

ASR Enc. 12.4% 9.1% 13.3%
Reference Enc. 12.1% 9.1% 12.6%

(2) SELM - Target Enc.
ASR Enc. 12.5% 9.3% 12.5%
Reference Enc. 12.1% 9.1% 12.3%

(1) + (2) (Lin. Interpolation)
ASR Enc. 12.1% 9.1% 12.3%
Reference Enc. 11.9% 9.1% 11.9%

5. Conclusion
In this paper, we present the use of deep semantic encodings
for training SELMs that exploits the semantic constraints in the
language. Deep semantic encodings enable SELMs to be op-
timized both for the transcription and the understanding per-
formance by suppressing the ASR noise. We observe that the
target encodings are more robust to ASR noise than the frame
encodings. We achieve 4.9% relative improvement in WER and
3.7% relative improvement in TER over the RNNME model for
the whole evaluation set with the linear interpolation of SELMs
that use frame and target encodings with equal weights.
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