

D6.1 – Report on the architecture of
SENSEI conversation summarization
prototype

Document Number D6.1

Document Title Report on the architecture of SENSEI conversation
summarization prototype

Version 2.0

Status Final

Work Package WP6

Deliverable Type Report

Contractual Date of Delivery 31.10.2014

Actual Date of Delivery 31.10.2014

Responsible Unit AMU

Keyword List Prototype, evaluation, requirements, specifications

Dissemination level PU

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 2/35

Editor
Benoit Favre (AMU)

Contributors
Ahmet Aker (USFD)

Benoit Favre (AMU)

Carmelo Ferrante (UNITN)

Adam Funk (USFD)

Vincenzo Lanzolla (TP)

Giuseppe Riccardi (UNITN)

SENSEI Coordinator
Prof. Giuseppe Riccardi

Department of Information Engineering and Computer Science

University of Trento, Italy

riccardi@disi.unitn.it

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 3/35

Document change record

Version Date Status Author (Unit) Description

0.1 07/22/2014 Draft Benoit Favre (AMU)
Table of Content

0.2 08/25/2014 Draft Benoit Favre (AMU)
Added evaluation descrip-
tion

Added user interface stubs

0.2a 08/25/2014 Draft Giuseppe Riccardi (UNITN) Add initial requirements

0.2b 08/25/2014 Draft Carmelo Ferrante (UNITN) Add software list

0.3 08/31/2014 Draft Benoit Favre (AMU)

Add appendix A, require-
ments, developer process,
backend modules, sche-
mas

0.4 09/01/2014 Draft Benoit Favre (AMU) Add REST specification,
mockups

0.5 09/11/2014 Draft Benoit Favre (AMU) More screenshots and
mockups

0.6 09/14/2014 Draft Benoit Favre (AMU) Refine REST protocol, up-
date scenario section

0.7 09/15/2014 Draft Benoit Favre (AMU) Add social-media use ca-
se scenarios

0.8 09/16/2014 Draft Benoit Favre (AMU) REST URLs reverted to
http except for gateway

0.9 09/18/2014 Draft Adam Funk (Sheffield) Update conversation re-
pository description

0.9b 09/18/2014 Draft Ahmet Aker (Sheffield) Add clustering and linking
module

0.9c 09/18/2014 Draft Benoit Favre (AMU) Update backend modules

0.10 09/19/2014 Draft Benoit Favre (AMU) Rewrite UI modules, add
conclusion

0.11 09/19/2014 Draft Vincenzo Lanzolla (TP) AOF module

0.12 09/26/2014 Draft Benoit Favre (AMU) Add SM scenario

1.0 09/26/2014 Draft Benoit Favre (AMU)

Coherence with other
WPs.

Version ready for scientific
review and quality check

1.1 09/29/2014 Draft Giuseppe Riccardi (UNITN) Review

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 4/35

1.2 09/29/2014 Draft Elisa Chiarani (UNITN) Quality Check

1.3 09/29/2014 Draft Benoit Favre (AMU)
Improve diagram quality,
align wording with D1.2
and D5.1, some editing,

1.4 10/15/2014 Draft Adam Funk (Sheffield) Scientific review

1.5 10/15/2014 Draft Benoit Favre (AMU) Modifications required by
scientific review

2.0 10/20/2014 Final Elisa Chiarani, Giuseppe
Riccardi Final version

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 5/35

Executive summary
This document describes the specifications of the prototype that will support the evaluation of
conversation summarization approaches proposed in the course of the SENSEI project.

For the speech use case, the evaluation scenarios consist in helping QA professionals fill agent
observation forms, as well as find uncommon situations in conversations.

For the social media use case, they consist in generating town hall summaries of comments re-
lated to news articles, finding editor picks, and supporting comment writers.

Functional analysis of these scenarios revealed that the prototype should contain a collection
browser, conversation and an agent/reader views, a specialised search engine and means of
inputting evaluation material. Technically, the prototype will be a server hosting backend REST
modules, and exposing a web-based client. The development of the modules will draw from
core technology developed in WP3, WP4 and WP5 and follow adequate quality assurance
through a single deployment target virtual machine (VM), unit testing and source control.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 6/35

Table of Content
Executive summary .. 5

1. Introduction ... 8

1.1 Overview ... 8

1.2 Objectives ... 8

1.3 Evaluation scenarios ... 8

2. Requirements ... 12

2.1 Organization .. 12

2.2 Usability ... 12

2.3 Software .. 12

2.4 Hardware ... 12

2.5 Latency.. 12

2.6 Security ... 12

2.7 Quality ... 13

3. Development process ... 14

3.1 Development practices .. 14

3.2 Source control ... 14

3.3 Deployment ... 14

3.4 Quality insurance ... 15

4. Detailed design ... 16

4.1 Guidelines ... 16

4.2 Architecture ... 16

4.3 Backend modules .. 16

4.4. User interfaces ... 22

5. Conclusion .. 26

5.1. Roadmap .. 26

Appendix A: Virtual machine user guide. .. 27

A.1. Virtual machine description .. 27

A.2. Downloading the VM ... 27

A.3. Networking .. 27

A.4. How to get an account ... 28

A.5. Installed software ... 28

A.6. Updating .. 28

Appendix B: mock-ups and screenshots ... 29

B.1. Study of existing interfaces .. 29

B.2. Collection browser ... 30

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 7/35

B.3. Conversation view ... 31

B.4. Search ... 31

B.5. Auditor observation form .. 32

B.6. Semantic concordancer ... 32

B.7. Statistics .. 32

B.8. Evaluation input ... 33

B.9. Agent/Blogger view .. 34

Appendix C: REST/JSON tutorials ... 35

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 8/35

1. Introduction
1.1 Overview

One of the objectives of the SENSEI project is to run user-oriented evaluations of the proposed
approaches to conversation summarization. The SENSEI prototype encapsulates research
technologies in a coherent package for performing these evaluations. It showcases conversa-
tion-oriented summaries, blogger-oriented summaries, rated questionnaire summaries, and ad-
hoc reports. This document presents the requirements and specifications of the SENSEI proto-
type.

1.2 Objectives
The SENSEI project will perform an evaluation of the approaches to conversation summariza-
tion proposed in the course of the project in an ecological environment where professional users
perform a real-life task. The evaluation focuses on the differential generated by the technology
in achieving the targeted tasks. In order to support that experiment, the SENSEI project will de-
velop a prototype which will integrate research technologies for conversation understanding into
instrumented, intuitive user interfaces destined to the subjects of the evaluation: professionals
targeted by the Speech and Social Media use cases.

The objectives of this document are to:

• List the requirements driving the evaluation and the development of the prototype.
• Specify the architecture and the interfaces between the components of the prototype.
• Define a software development framework, including software and hardware environ-

ment, as well as engineering guidelines.

This document is not a detailed specification of the software in order to keep the necessary agil-
ity to account for refinement of both the evaluation scenario and the research technologies dur-
ing the development of the prototype.

1.3 Evaluation scenarios
Evaluation will be performed on the speech and social media use cases. The speech use case
takes place in a call centre where quality assurance (QA) professionals (the users of the
SENSEI prototype) are tasked with collecting agent and corpus-level statistics and atypical ex-
amples of calls for monitoring and improving the call centre. The social-media use case targets
journalists and web comment readers and writers who have to tackle hundreds of reactions to
news releases. The journalists’ task is to gather and interpret trends, in order to steer the crea-
tion of follow-up articles while commenters shall collect information and produce new content
through social interactions. The following describes the main lines of the evaluation scenario,
which is defined in details in D1.2.

The objective of the prototype is to support ecological evaluation of SENSEI-created technology
and approaches. In the evaluation, subjects have to perform a task which is non-trivial, matters
for them and is solved in the most realistic environment, in other words a task that they already

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 9/35

do in their daily activities. Therefore, in both use cases, we will evaluate how well the experi-
ment subjects (QA professionals, journalists, commenters) perform a task with existing technol-
ogy and methodology, versus how well they perform it with SENSEI tools. Such evaluation is
different from intrinsic evaluation which compares the output of a system to a gold standard
without measuring how this system affects human behaviour. While the SENSEI project will run
intrinsic evaluations on the output of systems for most subtasks, the prototype specification fo-
cuses on the extrinsic evaluation of the system. For each tasks tackled by the extrinsic evalua-
tion, SENSEI systems will have to be adapted in order to provide helpful output for evaluation
subjects.

1.1.1 Speech use case scenarios

The speech use case is embodied by the work of QA professionals in call centres, monitoring
how agents handle inbound and outbound calls. As detailed in D1.2, several use cases have
been selected for designing the evaluation scenario: (1) the automatic generation of call surveys
and (2) conversation oriented summaries. In the first use case, QA professionals listen to a
sample of conversations from a given agent and fill an Agent Observation Form (AOF) about
agent behaviour, such as communication skills, politeness, respect of the script, etc. These
forms are used to monitor how agents perform their work and perform targeted training when
needed. In the second use case, QA professionals study conversations from a caller perspec-
tive, gathering tackled topics, problems, solutions, etc. The outcome is used, for instance, to
improve conversation scripts and agent training material.

The extrinsic evaluation is elaborated in the framework of these use cases. It will be supported
by the RATP-DECODA and LUNA datasets which consist of a set of conversations recorded in
call centres. The evaluation can be cast as two general scenarios, even though both might not
be evaluated (see D1.2 for scenario details).

The first scenario is “agent observation form-filling” a task relying on rated questionnaire sum-
maries. Subjects have to analyse a set of conversations and fill an AOF for a given agent. For
each question of the AOF, they have to give supportive statements of their decision. We com-
pare how they perform with and without the SENSEI tools. In this scenario, the evaluation could
be run in the following way (numbers are placeholders, actual values will be defined by WP1). A
set of QA professionals are given 20 conversations each, from a single agent. The time limit for
filing the AOF is 20% of the total duration of the conversations. A first subgroup, the control
group, has access to current technology: an audio player for each conversation, the corre-
sponding transcript with a text search function. The second group has access to the same func-
tionalities as the first group, plus prefilled AOFs at the agent level and conversation level, syn-
opses of the conversations for better browsing, advanced search including semantics, argumen-
tative structure and emotions. After the time is elapsed, their forms are compared to reference
forms carefully filled by experts.

The second scenario is “collection-wide conversation retrieval,” a task relying on conversation
summaries and ad-hoc reports. Subjects perform a collection-level information retrieval task.
We compare how well they perform with and without the SENSEI tools. This scenario could be
run as follows. Subjects are given an information need: for instance “find conversations where
the caller is asking for an itinerary.” Then, they have a limited time (10 minutes, for instance) to

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 10/35

find all conversations in the collection which a relevant to the query, and explain in their own
words why they are relevant. The control group is given each conversation with an audio player,
the transcripts and a search function. The other group is given the SENSEI conversation
browser which includes advanced search and display of the conversations. After the time is
elapsed, subjects are rated according to the number of relevant conversations they have been
able to retrieve, compared to expert-labelled conversations.

1.1.2 Social media scenarios

The social-media use case consists in supporting journalists who post articles online, as well as
comment readers and writers (both called commenters) with tools for exploiting comment
threads. Journalists may want to gather reader testimonies from the comments, direct readers
towards insightful comments, and simply connect with their readers. Commenters may want to
have all the elements for posting constructive comments, that is know what is being talked
about in the thread, know who the other commenters are, etc. The two use cases selected in
D1.1 are “Town Hall Summaries (THM),” summaries of what is talked about in comment
threads, by whom, what are the arguments and opinions, and “identifying trends in readers’
comments”, identifying topics with a target volume and polarized opinions. Again, the extrinsic
evaluation will be carried out in this framework.

The data for supporting the extrinsic evaluation is a set of news articles with accompanying
comment threads, collected by WP2. The articles and comments have been extracted from the
website of the Guardian (see D2.2). Three scenarios for ecological evaluation have been se-
lected. More details about the scenarios can be found in D1.2.

The first scenario is “A comment editor preparing a summary of the contents of a news article
and associated comments,” a task relying on conversation summaries. In this scenario, subjects
(comment editors) have to write an article which summaries the comments to a given news arti-
cle, selected for its particularly interesting commenters’ conversation. Under a limited time (i.e.
20 minutes), subjects have to write a town-hall summary of the comment threads, answering
questions such as “What’s the lead? Who took part? What were the people talking about? What
issues did people feel strongly about? What issues did people agree/disagree about?” The con-
trol group is given the article, the comments (as presented on the Guardian website) and a
search function. The other group can use the thread view proposed by SENSEI which shows
the argument structure, emotions, and semantic analyses. An advanced search function is
available. Subjects are rated in different ways which will be defined by WP1, for instance by
comparing their production with gold standard town hall summaries, created without a time limit.
Subjects are also asked to fill a post-hoc questionnaire.

The second scenario consists in “A Comment Editor selecting ‘editor picks’ from a set of com-
ments,” a task using conversation summaries, blogger-oriented summaries as well as ad-hoc
reports. In this scenario subjects have to trawl through comment threads and retrieve high quali-
ty comments that would have been selected as “editor picks” for their particularly useful content.
The control group performs the task with a user interface similar to the current Guardian website
(found in Appendix B), including a text search function. The other group has access to the
SENSEI thread view, and commenter details, as well as advanced search. Subjects are rated

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 11/35

according to various metrics, such as the number of gold-standard editor picks they can retrieve
in a limited time. Subjects are also asked to fill a post-hoc questionnaire.

The last scenario is “A comment provider writing a new comment,” a task relying on ad-hoc re-
ports and conversation summaries. In this scenario, comment providers are given a news article
and comment threads. Under a time constraint, they are required to read the threads and de-
cide or not to create a new thread, and/or post a reply to a comment in an existing thread. The
control group has access to a baseline threaded view (for example the current Guardian web-
site), while the test group has access to SENSEI technology such as advanced search, and
conversation structuring. Subjects are evaluated on the quality of their production, as well as
asked to fill post-hoc questionnaires on their understanding of the content of the comments.

1.1.3 Functional analysis

After describing both the social-media and speech scenarios, it is possible to outline functionali-
ties that will be common to both scenarios and functionalities which need to be scenario-
specific. We can define a list of views and the corresponding functionality:

• Collection browser: subjects shall be able to browse the list of evaluation-targeted con-
versations. This view might benefit from conversation summaries for locating quickly rel-
evant information.

• Conversation browser: for a single conversation, the subjects should be able to look at
the transcript/text, as well as listen to the audio. This view shall involve conversation
summaries.

• Agent/commenter: allows displaying aggregate information about an agent or comment-
er. This view shall involve blogger-oriented summaries as well as rated questionnaires,
depending on the use case.

• Basic text search: allows retrieving a list of conversations (or items from conversations
such as speech turns, single comments).

• Advanced search: allows retrieving conversations according to more complex criteria,
fed by SENSEI technology. This view will be central to ad-hoc reports.

• Evaluation input: allows subjects to complete the scenario task by filling in evaluation
fields, as well as explaining their motivation for doing so.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 12/35

2. Requirements
In the following, the high-level requirements for the prototype specification are given as guide-
lines for the choices made in the rest of the document.

2.1 Organization
Software development and processes should not incur a demanding overhead and should divert
as little resources as possible from the research aspects of the project. Software components
supporting the various evaluation scenarios should be factorized as much as possible, specifi-
cally to draw from the similarity between the speech and social media use cases.

2.2 Usability
The prototype shall be easy to use for the targeted evaluation subjects. In particular, it should
rely on proven, well accepted technologies such as web sites. In order for the evaluation to
measure a technological difference and not a usability difference, great care should be taken to
create intuitive, ergonomic and instrumentable user interfaces. The user interfaces should be
appealing, in order to motivate evaluation subjects and serve demonstration purposes. They
should be integrated in a single, coherent package, and follow the same style guide.

2.3 Software
Development should prioritize the use of open-source, well supported software. Programming
languages and libraries shall be widespread, highly documented, well accepted and reasonably
efficient.

2.4 Hardware
The prototype shall not depend on specific hardware. In particular, it should be hostable on vir-
tual hardware in order to be able to replicate as closely as possible the development conditions
on all sites of the project partners. A central platform for running the prototype shall be made
available by one of the partners.

2.5 Latency
Prototype components shall not have latency higher than what is accepted by professionals tar-
geted by the evaluation. In particular, components shall be divided into offline modules which
are run beforehand and the result of which is cached, and online modules which are responsive
to user input.

2.6 Security
The prototype shall not allow access to unauthorized individuals. Categories of users should be
allowed to act according to their capabilities (such as viewing, modifying, parameterizing). All
accesses to the system shall be logged.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 13/35

2.7 Quality
Source code as well as data shall be versioned. Version tags should be used to denote compat-
ible modules and data. Under reasonable development overhead, components shall be unit-
tested, in particular at the interface level between components (for instance the server API).

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 14/35

3. Development process
This section describes the development process adopted for the prototype.

3.1 Development practices
Developers shall write well documented, easy to understand and formatted code, with good
naming conventions. They should focus on providing stable interfaces to the modules they have
in charge. They should test their code before sharing it with other partners.

3.2 Source control
All source code and data produced for the prototype shall be versioned in order to ease the col-
laboration process and track changes during the project.

As outlined in D2.1, SENSEI unprocessed data is versioned under subversion, hosted at
Websays.

The prototype source code and data is versioned in a git repository, available at
https://gitlab.lif.univ-mrs.fr/benoit.favre/sensei-proto. Access requires a user account and pass-
word, available from the WP6 leader. Gitlab is an open source development collaboration suite
which provides git repository management, code reviewing, issue tracking, activity tracking and
documentation through wikis. In addition, gitlab can be interfaced with gitlab-ci, a continuous in-
tegration server which tracks the success of build and test suites after each git commit.

All developers working on the SENSEI prototype should get push rights to the gitlab central re-
pository and deliver their software this way. They should follow git good practices, as described
in http://sethrobertson.github.io/GitBestPractices, which include using meaningful commit mes-
sages and not publishing changes that break the running version of the prototype.

3.3 Deployment
In order to help developers work on the prototype, a reference deployment platform has been
defined. This definition includes the version of the operating system, libraries and programming
languages the developers can use. For all dependencies, only one version is preferred in order
to increase the coherence and reduce the friction of the development process. All developers
shall use the reference deployment platform for testing their code prior to sharing it with other
partners. The platform consists in1:

• Operating system: Ubuntu 14.04
• Programming languages: Python 2.7, Python 3, PHP 5.3.2, Java 7, Perl 5, C/C++ with

gcc/g++
• Databases: MySQL, MongoDB
• Web server: Apache2 with mod_rewrite, Apache Tomcat 6.0.39
• Web browser: Google Chrome / Chromium browser
• Web frameworks: HTML5, jQuery, AngularJS, Bootstrap, HighCharts.

1 A full description of the installed packages can be found in https://gitlab.lif.univ-
mrs.fr/benoit.favre/sensei-proto/blob/master/deploy.sh (access requires developer credentials).

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 15/35

In addition to defining the reference deployment platform, project members can access a virtual
machine (for VirtualBox or VMWare) preinstalled with the reference deployment platform soft-
ware, to be used as server for local tests. The VM contains a 200GB hard drive, 2GB of
memory and is available as a ~5GB download. The content of the VM can be updated from the
sensei-proto git repository using a provided script. Appendix A gives quick start documentation
to using the VM for developers.

In addition to the VM, a reference deployment server runs at AMU (139.124.22.35 / sensei-
proto.lif.univ-mrs.fr). Every time a developer pushes changes to the git repository, the machine
will run the update script so that it hosts the latest version of the prototype. It will only be acces-
sible to authorized project members. For security reasons, installing new software on the refer-
ence server will require manual intervention. A frozen, evaluation-specific deployment will be
used during evaluations.

3.4 Quality insurance
Having a centralized and synchronized development process already ensures the coherence of
the developed software modules. In addition, a gitlab-ci continuous integration server is being
run to provide developers with amenities for automatically testing their code after each commit.
Even though unit testing is encouraged, specifically at the interface between modules, it is not
mandatory in order not to hamper developer productivity.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 16/35

4. Detailed design
4.1 Guidelines

The detailed design contains high-level description of the components necessary for the proto-
type. The descriptions focus on functionalities instead of implementation details, which we need
to keep flexible in order to foster interaction opportunities between research and development.

4.2 Architecture
The prototype will be a web service with a centralized server running databases and serving
files, as well as a client side written in HTML and making use of modern browser features for in-
tuitive and swift user interactions. The user interface views are run client-side while the backend
modules are run server-side.

4.3 Backend modules
Backend modules run on the server. For maximum flexibility, they are written in PHP, Python,
Java, Perl or C/C++ and communicate through representational state transfer (REST) interfac-
es.

Arbitration between the modules is performed by a Gateway module. The conversation reposi-
tory provides access to data, the synopsis generator, AOF generator, etc provide SENSEI-
powered high-level conversation analyses, the evaluation recorder module stores the data cap-
tured for the evaluation. Other modules feed the different components of the user interface.

In the following, so-called “Offline” modules might run for a long time and are therefore fed in an
offline manner with precomputed resources or run beforehand to generate those resources
(they are not subject to latency constraints). These resources are cached in the conversation
repository. “Online” modules are subject to user input and compute their output on the fly under
the latency constraint.

Figure 1: Server-side modules. Blue modules are run offline, green modules are online, the gate-

way mediates the access to other components.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 17/35

The REST APIs of the prototype shall be stateless, cacheable, make use of uniform naming
(use nouns instead of verbs), be implemented as HTTP queries using common error codes and
reply as JSON, XML or CSV (modules should at least implement JSON). Appendix C lists tuto-
rials for implementing REST services in various programming languages. The gateway is the
only server exposed to clients, it redirect queries to other modules. For instance, the following
URL:

https://sensei-proto/synopsis-generator/synopses/20091112_RATP_SCD_0020

is forwarded to the synopsis generation module running on the same server at the URL:

http://localhost:port/synopses/20091112_RATP_SCD_0020.

Note that only the gateway uses https.

In the rest of the document, except for the gateway module which is exposed to the outside
world, module APIs will be given in the form http://localhost:port/ where the module name does
not appear.

The REST protocol is defined for all server-side modules as follows. The definition includes for
each service, an HTTP action (GET, POST, PUT,...), a URL, a definition of the action, the for-
mat of the output, the list of possible errors and associated error codes as well as associated
content. In particular, the following conventions shall be used.

HTTP verbs:

● GET: retrieve a resource
● POST: create a resource
● PUT: update a resource
● DELETE: remove a resource

HTTP error codes:

● 200 Success (when a query is successful), 201 Created (when a resource had to be
created)

● 304 Not modified (when a resource did not need to be created because it already exist-
ed)

● 400 Bad request (when the parameters of a query don’t make sense), 401 Unauthorized
(when credentials do not permit the query), 404 Not found (when a resource does not
exist)

● 500 Internal server error (when a service yielded an exception), 501 Not implemented
(when a service is not yet implemented)

Query parameters:

● approach: specify a method for generating the resource
● from, to: specify a range
● format: xml, json, csv (for modules that support multiple formats)

JSON output in case of error:

{success: false, error: “message”, code: error-code}

JSON output in case of success:

{success: true, result: {content}, code: error-code}

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 18/35

Authentication and credentials are managed by the gateway module (described thereafter), oth-
er modules (1) do not listen for connections outside of localhost, and therefore (2) don’t have to
deal with credentials.

Example of API URLs:

GET http://localhost:port/documents (retrieve full list of documents)

GET http://localhost:port/documents/1 (retrieve first document)

GET http://localhost:port/approaches (retrieve list of valid approaches)

GET http://localhost:port/parameters (retrieve list of available parameters)

For each module, the specification document lists the behaviour of the module and its API. Note
that the API is not binding and might be changed to accommodate for evolutions during the pro-
ject. It will be fully specified in D6.2.

4.3.1 Gateway

This modules arbitrates the communication between the different modules. It also serves the
files for the web interface. It is an https service exposed to the outside, so it also makes sure
that clients are properly authentified. URLs of the form:

GET https://sensei-proto/<module-name>/<resource>/<id>...

are forwarded to the corresponding module (given adequate credentials). Other modules than
the gateway listen in http on the local network (for instance localhost) on non-privileged port
numbers, possibly in the range 8000-8100. The mapping between host:port and module names
is defined in a configuration file, loaded by the gateway. For convenience, the gateway also lis-
tens on localhost for other modules’ use:

GET https://sensei-proto/<module-name>/<resource>/<id> is rewritten as

GET http://localhost:port/<resource>/<id> with the port of the corresponding module.

In addition, the gateway hosts the login service which given a user/password combination re-
turns an identification token which must be used to access other resources.

POST https://sensei-proto/login/<user>

with the password as POST parameter. This URL returns an identification token which must be
passed to identify all subsequent communications. Any other query without the authentication
token is redirected to the login UI.

This module is an online module.

4.3.2 Conversation repository

This module enables other modules to store, annotate, and access the content of structure con-
versations. It is fully described in D5.1. It shall respond to various queries (see D5.1) including
the following fundamental ones:

GET http://localhost:port/documents lists all document ids.

GET/PUT/DELETE http://localhost:port/document/<doc_id> returns the content of a document,
updates it, or deletes it.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 19/35

POST http://localhost:port/document stores a new document and returns its unique id (generat-
ed by the repository).

POST http://localhost:port/document/content stores the textual content of a document, returns
its id.

POST http://localhost:port/annotations/<doc_id> adds annotations to a document.

POST http://localhost:port/features/<doc_id> stores features related to a document.

DELETE http://localhost:port/annotations/<doc_id>/<set_name>/<ann_id> deletes a set of an-
notations from document

DELETE http://localhost:port/annotations/<doc_id>/<set_name>/<ann_id> deletes specific an-
notations from document.

DELETE http://localhost:port/features/<doc_id>/<feature_name> deletes a feature from the
document.

GET http://localhoost:port/documents?<feature0>=<value0>&<feature1>=<value1>... returns a
list of documents that have feature specified.

POST http://localhost:port/documents returns a list of identifiers of documents that have feature-
value pairs specified as POST data.

A document is an object consisting of content text, a map of document features, and sets of an-
notations, generally represented as JSON. D5.1 fully explains the structure of a document.

This module is an online module.

1.4.3.3. Synopsis generator

The synopsis generator module encapsulates the synopsis generation approaches developed in
WP5 and can generate synopses for each of the spoken conversation. The API should allow to
select the type of synopsis (text, list of descriptive sentences attributed to sets of speech turns,
semantic representation) as well as the approach for generating it (baseline, MMR, etc). It
should allow the offline generation of synopses and store them in the conversation repository.
The module shall reply to the following query:

GET http://localhost:port/synopses/<conversation-id>?type=<type>&approach=<approach> re-
turns the synopsis for a given conversation, for a given type and approach. The default type is a
textual synopsis; the default approach will be determined in WP5.

GET http://localhost:port/approaches lists valid approaches.

This module is an offline module.

4.3.4 THM Generator

This module generates structured town-hall-meeting summaries for supporting the social media
use case evaluation. It will be developed by WP5. It supports the following API:

GET http://localhost:port/summary/<document-id>?type=<type>&approach=<appraoch>

Generates a properly structured summary for a given social-media conversation (news article
and comments).

GET http://localhost:port/approaches lists valid approaches.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 20/35

4.3.5 Agent observation form filler

The AOF filler processes spoken conversations in order to reply the questions of the agent ob-
servation form. This module encapsulates the technology developed in WP3, WP4 and WP5 for
conversation analysis. For each question, it should return a score for each of the possible an-
swer, the highest score being the decision of the module. For each question, it should be possi-
ble to select the approach for generating the decision. It should also allow the offline generation
of AOF answer. The module supplies the following queries:

GET http://localhost:port/forms/<conversation-id>/<question-id>?approach=<approach> returns
the vector of (answer, score) couples for a given question. The default approach will be defined
by WP3.

GET http://localhost:port/questions returns the list of question ids.

This module is an offline module.

4.3.6 Topic structure generator

This module encapsulates WP3 approaches which extract the topical structure of conversa-
tions. For each conversation, it generates a segmentation in topics as well as topic labels, al-
lowing to select the approach being used. It allows offline processing. The module provides the
following queries:

GET http://localhost:port/topics/<conversation-id>?approach=<approach> returns the topic
structure for a given conversation. The default approach will be defined by WP3.

This module is an offline module.

4.3.7 Argument structure generator

This module generates the argumentative structure of a conversation for both use cases. It will
be developed in the course of WP4 and follows this API:

GET http://localhost:port/arguments/<conversation-id>?approach=<approach>

GET http://localhost:port/coreferences/<conversation-id>?approach=<approach>

The first method returns the argument structure while the second one returns the coreference
pairs of the document.

This module is an offline module.

4.3.8 Thread untangler

This module inputs complex threaded conversations such as those found in social media and
returns untangled conversations according to various criteria such as topic, commenters, emo-
tions, etc. It may precompute potential thread boundaries. It encapsulates approaches devel-
oped in WP3 and WP4, and draws specifically from the argument structure. The module pro-
vides the following queries:

GET http://localhost:port/subthreads/<conversation-
id>?approach=<approach>&criterion=<criterion> returns the subthreads of a conversation ac-
cording to given criteria. The default approach and criteria will be defined in WP4.

This module is an online module.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 21/35

4.3.9 Semantic analyser

This module encapsulates the semantic analysis approaches developed in WP3. It inputs con-
versations and outputs semantic structures. The module provides the following API:

GET http://localhost:port/semantics/<conversation-id>?approach=<approach> returns the se-
mantic analysis of a conversation.

Approaches and output format will be defined in WP3.

This module is an offline module.

4.3.10 Parasemantic analyser

This module encapsulates the parasemantic analysis approaches developed in WP3. It inputs
conversations and outputs parasemantic classes and analyses. The module provides the follow-
ing API:

GET http://localhost:port/parasemantics/<conversation-id>?approach=<approach> returns the
parasemantic analysis of a conversation.

Approaches and output format will be defined in WP3.

This module is an offline module.

4.3.11 Clustering and linking module

This module provides clustering of comments/speech turns into topically coherent sets. In addi-
tion, it provides comment/speech turn linking. This module will be provided by WP5. It follows
this API:

GET http://localhost:port/clusters/<document-id> returns a list of clusters for the given document
id.

GET http://localhost:port/links/<utterance-id> returns a list of utterances linked to the given ut-
terance, with link labels.

This module is an offline module.

4.3.12 Baseline indexing and search

This module provides baseline word search from conversation transcripts. It can be implement-
ed with SOLR. The module implements the following API:

GET http://localhost:port/search/<query>?from=<from>&to=<to> returns the ordered set of con-
versations that match a search query, optionally from the <from> to the <to> result. By default,
returns 20 results. A query is a sequence of words separated by spaces.

This module is an online module.

4.3.13 Advanced Indexing and search

This module provides instant search from conversation transcripts, structural, semantic and
parasemantic tags. It can be implemented with SOLR. The module implements the following
API:

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 22/35

GET http://localhost:port/search/<query>?from=<from>&to=<to> returns the ordered set of con-
versations that match a search query, optionally from the <from> to the <to> result. By default,
returns 20 results. A query is a sequence of words, structural, semantic and parasemantic tags.

This module is an online module.

4.3.14 Statistics

This module provides the ability to extract various statistics from conversations, such as the dis-
tribution of conversation length against emotions and other multivariate analyses. It is fed with a
set of variable names and returns statistics and histograms. The module implements the follow-
ing API:

GET http://localhost:port/multivariates/<variable1>&<variable2>&<variable3…> returns the sta-
tistics for a set of variables.

GET http://localhost:port/variables returns the list of valid variable names.

GET http://localhost:port/histogram?variable=<variable>&bins=<bins> returns the histograms
for a variable, in a number of bins.

This module is an online module.

4.3.15 Media provider

This module provides access to audio files. In its basic implementation, it is just an HTTP file
server, queried from the browser through HTML5 audio. The API of this module is as follows:

GET http://localhost:port/media/<conversation-id> returns an mp3-encoded audio file for a given
conversation. This module supports HTTP media streaming (can be implement through
Apache).

This module is an online module.

4.3.16 Evaluation recorder

The evaluation recorder is the module in charge of logging all evaluation data, including nature
and timing of interactions, and evaluation form data. It can be queried in order to display statis-
tics and evaluation outcome. This module provides the following API:

PUT http://localhost:port/evaluations/<conversation-
id>?user=<user>&condition=<condition>&field=<field>&value=<value> records an evaluation
parameter.

GET http://localhost:port/evaluations/<conversation-id> retrieves the outcome of the evaluation.

The above URLs will be redesigned to accommodate for the specifics of the use cases.

This module is an online module.

4.4. User interfaces
The user interface consists in a number of views which can be used by subjects in order to per-
form the task given to them. All views shall be instrumented in order to record the timing of user
input such as clicks and text entry. User interfaces are implemented as a web client using
HTML5, jQuery, AngularJS, Bootstrap.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 23/35

Figure 2: client side views

4.4.1 Login

This view allows the user to enter appropriate credentials. Users can have three roles: adminis-
trator, evaluator, and regular. Interactions from evaluator are logged and they have access to
evaluation input forms. Administrator can add new users and change roles. Regular users can
only browser the content of the conversation collection.

4.4.2 Main dashboard

This view shows an overview of the possible interactions, database-level statistics, as well as
instructions for the evaluation subjects.

4.4.3 Collection browser

This view shall show the content of the collection. It shows conversations, agents/commenters
and global statistics. The list of conversations and the list of agent/commenters can be orga-
nized by various criteria, such as topics, argument structure, semantics, parasemantics. For
each conversation, it shows a summary and factual descriptors. For each agent/commenter, it
shows factual descriptors. Global statistics can be histograms and curves and support use cas-
es (for instance, average time of a call, number of replies to a news article…) This view can be
used to generate ad-hoc reports, and takes advantage of conversation summaries and blogger-
oriented summaries for qualifying contents of the collection.

Selecting a conversation or agent/commenter leads to the corresponding view. This view can be
restricted to baseline display for supporting the control group evaluation.

This view is supported by the following backend modules: conversation repository, statistics,
topic structure, synopsis and THM generators, semantic, parasemantic, and argument structure
generators, and clustering and linking.

4.4.4 Conversation view

The conversation view shall display a single call centre conversation or comment threads from a
news article. The conversation is structured by topic, argument, semantics, parasemantics in
order to help quickly browsing to relevant information. It is supported by conversation summar-
ies, such as THM or synopses. Annotations can be selected for searching other conversations

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 24/35

or displaying them in other views. For audio conversations, a synchronized player is available.
For long conversations such as in social media, subthreads can be untangled. The view can be
used for finding similar / redundant conversations.

This view can be restricted to baseline display (transcript, comment threads) for supporting the
control group evaluation.

This view is supported by the following backend modules: conversation repository, media pro-
vider, topic structure, synopsis and THM generators, semantic, parasemantic, and argument
structure generators, and clustering and linking.

4.4.5 Agent / commenter view

This view shall display details about an agent or commenter: factual information, statistics along
semantic, structural, parasemantic, topical axes, list of contributions, agent observation form,
friends and foes, emotion flowers, etc. This view embodies blogger-oriented summaries in the
social-media use case, as well as rated questionnaires in the speech use case.

This view can be restricted to baseline display (factual information and contributions) in order to
support the control group evaluation.

This view is supported by the following backend modules: conversation repository, statistics,
topic structure, semantic, parasemantic, and argument structure generators, and clustering and
linking.

4.4.6 Baseline search view

The baseline search view provides text search on transcripts / comment threads. It implements
instant search suggestions (display results as soon as text is typed), and displays results as a
list of passages ranked by relevance. Each passage is qualified by extracted snippets showing
the matches. This view essentially mimics a web search engine as can be found on many web-
sites.

This view relies on the conversation repository, and baseline search. It could be implemented
using the SOLR search engine.

4.4.7 Advanced search view

This view shall allow searching the collection by keywords, and all other annotations. It imple-
ments instant suggestions, and recognizes topics, argument structure, semantic and parase-
mantic elements. The results are displayed as a list showing a summary of the conversation,
relevant snippets or keywords, highlighting found items. It also shows factual descriptors (such
as duration, concepts). Search results are ordered by relevance. The search results displayed
in this view are at the heat of ad-hoc reports.

This view is supported by the conversation repository, advanced search, topic structure, synop-
sis generation, semantic analyser, parasemantic analyser, thread untangler, clustering and link-
ing, THM generator and argument structure extractor.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 25/35

4.4.8 Evaluation input

This view allows subjects to input the outcome of their task. Given different constraints of the
evaluation scenarios for each use case, this view provides adequate controls for inputting sub-
ject production: text fields for writing summaries, forms for filling AOFs, etc. The AOF filling view
is already developed as part of WP2, and will be integrated for evaluation input. This view can-
not be accessed by regular users. For evaluators, it is always available besides other views, so
that they can enter their production at any time.

This view relies on the evaluation recorder.

4.4.9 Settings

This view shows the settings of the interface. In particular, evaluation scenarios and modalities
can be selected, users can be managed, and evaluation reports can be viewed. This view ena-
bles administrators to create evaluation scenarios: select how an evaluator will perform tasks
under a set of constraints, using which collection and in which order.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 26/35

5. Conclusion
This document presents the specification of the prototype which will be used for running the ex-
trinsic evaluation in the SENSEI project. The scenarios are AOF filling, spoken conversation re-
trieval (for the speech use case), THM summary writing, and staff picks selection (for the social
media use case). The prototype will be a website where subjects can perform the task using
SENSEI technology while a control group uses baseline features. The service side is composed
of REST services which expose modules from core technology WPs and an HTML5 user inter-
face for running the scenarios. Development guidelines recommend that adequate tools are
used for quality assurance and to maximize the flexibility of the design while minimizing the drag
on scientific work.

5.1. Roadmap
The next steps include the writing of the detailed design of the extrinsic evaluation in D1.3,
which will allow finalizing the prototype design document for D6.2. The responsibilities for the
development of the prototype are the following:

● WP3 will develop the semantic and parasemantic modules.
● WP4 will develop the argumentative structure module.
● WP5 will develop the summarization modules, the clustering and topic extraction mod-

ules, the conversation repository (already described in D5.1).
● WP6 will lead the integration of the modules and UI.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 27/35

Appendix A: Virtual machine user guide.
This section lists technical information about the virtual machine available for developers of the
SENSEI prototype as a reference platform. All modules developed for the prototype should be
tested on this virtual machine before being deployed to the actual server.

A.1. Virtual machine description
The VM is a VirtualBox virtual machine. It contains a 200GB HD, 2GB of RAM, with Ubuntu
14.04 server installed.

A.2. Downloading the VM
● The latest version of the virtual machine can be downloaded as an archive from the fol-

lowing URL: http://pageperso.lif.univ-mrs.fr/~benoit.favre/sensei/SENSEI-VM.ova (ac-
cess limited to SENSEI developers)

○ Note that the extension package from Oracle for USB-2.0 support for VirtualBox
should be installed.

○ Installing: import SENSEI-VM.ova in VirtualBox
● Changelog:

○ 20140716: pull to latest git, remove network adapter, add vbox additions
○ 20140520: initial release

A.3. Networking
● Networking uses NAT. If you want to expose a service to the outside, you need to setup

port forwarding in the network tab of VirtualBox settings
○ 8080 is forwarded to 8080 (you can open a browser to http://localhost:8080 to hit

tomcat).
○ 2222 is forwarded to 22 (ssh -p 2222 sensei@localhost to access the VM

through ssh)
● Mount shared directory in VM:

○ add shared folder in VirtualBox UI, remember how you named the folder
○ sudo mount -t vboxsf -ouid=sensei shared-folder-name /mnt/shared-folder
○ For more details, see http://devtidbits.com/2010/03/11/virtualbox-shared-folders-

with-ubuntu-server-guest/
● Fix "waiting for network configuration" at boot time: edit /etc/network/interface and com-

ment out the lines about eth1

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 28/35

A.4. How to get an account
Send an email to benoit.favre@lif.univ-mrs.fr with a name and email address. The person will
be contacted through that email address. Then, she has to login to https://gitlab.lif.univ-mrs.fr.
This will create her user in the gitlab database. After, contact Benoit Favre again in order to get
access to the SENSEI-proto git repository. User and password for accessing the VM must be
requested to the leader of WP6.

A.5. Installed software
● Development: build-essential make subversion git autotools-dev automake libtool
● Languages: perl openjdk-7-jre g++ python
● Web: lamp-server^ solr-tomcat (version 3.6.2)
● Editors: vim emacs
● Utils: ssh sox htop tmux screen
● Libraries: zlib-bin zlib1g zlib1g-dev zlibc libatlas-base-dev libatlas-dev

A.6. Updating
The prototype is stored in the following git repository hosted at AMU: https://gitlab.lif.univ-
mrs.fr/benoit.favre/sensei-proto. The repository is cloned in the VM under ./sensei-proto. The
VM can be updated by running the ./sensei-proto/update.sh script. This script pulls from the git
repository and runs the deploy.sh scripts which installs latest version of software and runs re-
quired services.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 29/35

Appendix B: mock-ups and screenshots
This section lists several early mock-ups of the user interface elements leveraged in the design
of the prototype.

B.1. Study of existing interfaces
This is the current comment section of articles on the Guardian website. It shows tabs for se-
lecting subcategories of comments, as well as the number of comments and layout options. For
each comment, the author, avatar, date and text are shown. In addition, it is possible to report
abuse, recommend comments and reply.

The following screenshot is the commenter oriented view on the Guardian website. It shows the
history of a commenter, in categorized tabs.

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 30/35

B.2. Collection browser

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 31/35

B.3. Conversation view

B.4. Search

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 32/35

B.5. Auditor observation form

B.6. Semantic concordancer

B.7. Statistics

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 33/35

B.8. Evaluation input

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 34/35

B.9. Agent/Blogger view

D6.1 Report on the architecture of SENSEI conversation summarization prototype| v2.0 | page 35/35

Appendix C: REST/JSON tutorials
● clients in different languages: http://rest.elkstein.org/2008/02/rest-examples-in-different-

languages.html
● python server: http://gotofritz.net/blog/weekly-challenge/restful-python-api-bottle/
● JSON encoding of java objects: https://code.google.com/p/google-gson/
● perl server: http://mojolicio.us/
● C++ server and client: http://nipun-linuxtips.blogspot.fr/2012/09/a-simple-rest-framework-

on-cc.html
● Java server: http://cxf.apache.org/docs/writing-a-service-with-spring.html

