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Abstract

We are interested in the problem of extracting meaning struc-
tures from spoken utterances in human communication. In Spo-
ken Language Understanding (SLU) systems, parsing of mean-
ing structures is carried over the word hypotheses generated by
the Automatic Speech Recognizer (ASR). This approach suf-
fers from high word error rates and ad-hoc conceptual repre-
sentations. In contrast, in this paper we aim at discovering
meaning components from direct measurements of acoustic and
non-verbal linguistic features. The meaning structures are taken
from the frame semantics model proposed in FrameNet, a con-
sistent and extendable semantic structure resource covering a
large set of domains. We give a quantitative analysis of mean-
ing structures in terms of speech features across human—human
dialogs from the manually annotated LUNA corpus. We show
that the acoustic correlations between pitch, formant trajecto-
ries, intensity and harmonicity and meaning features are statis-
tically significant over the whole corpus as well as relevant in
classifying the target words evoked by a semantic frame.
Index Terms: spoken language understanding, spoken dialog,
frame semantics, speech mining, acoustic features

1. Introduction

We are interested in the problem of extracting meaning struc-
tures from spoken utterances in human communication. In
Spoken Language Understanding (SLU) systems, parsing of
meaning structures is carried over the word hypotheses gener-
ated by the Automatic Speech Recognizer (ASR)[1]. The au-
tomatic transcripts generated by the ASR are parsed and syn-
tactic/semantic chunks are extracted. Such parsing models are
either hand-crafted (e.g. semantic grammars) or statistically
trained from annotated corpora with ad-hoc and application spe-
cific concept labels. This computational model has had success
in applications such as spoken dialog systems but may be lim-
ited by semantic coverage or high word error rates, in the case of
unconstrained conversational systems. In this paper we aim at
discovering meaning components from direct measurements of
acoustic and non-verbal linguistic features. Such components
include the most semantically important word as well as its de-
pendents within the semantic structures associated to a spoken
utterance.

This approach to speech understanding is motivated by rele-
vant research in speech and language processing, phonetics and
language acquisition. In language acquisition, the most impor-
tant questions are how to acquire words, their meaning while
interacting in a physical and social context. In [2, 3] , mean-
ing is grounded into machine actions and no semantic struc-
ture bias is assumed or exploited. In [4], meaning is directly
learned from phone sequence distributions and visual features
in the context of infant-directed speech. In computational lin-
guistics the role of prosodic features to predict phrase structures
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has been well studied for cue phrases [5] and classification of
intonational phrase boundaries [6]. Prosodic patterns have been
also used as features for detecting and classifying dialog acts in
conversational speech [7]. More recently the use of prosodic in-
formation has been applied to speech summarization [8]. From
an acoustic point of view, prosody has been shown to manifest
in variation of pitch, loudness, segment durations and specific
manner of articulation.

Theories have been proposed to explain the way prosody
can convey meaning through variation of these parameters.
In [9, 10] three codes characterize prosodic patterns. The fre-
quency (or size), effort and production code. Following [11]
there is a link between paralinguistic assertion and lowering
ones pitch. This link has profound origins as larger species,
which are often perceived to have dominant or dangerous be-
havioral pattern, normally have larger vocal apparatus and pro-
duce lower pitch.

In section 2 we describe the meaning structures we aim at
grounding into acoustic and linguistic features of the spoken ut-
terances. Here we also describe how such model has been used
to annotate the human-human dialog corpus, with a summary
statistics of data split, used further in classification experiments.
In section 3 we thoroughly exploit the acoustic features in order
to use those in acoustic prediction. The target word classifi-
cation with lexical features is described in section 4. Then a
combined classification measurements with oracle accuracy is
presented in section 5. We finally conclude in section 6.

2. The FrameNet Semantic Structures

We carried out our experiments using the LUNA spoken
dialog corpus, which was developed in the context of the
LUNA research project for next-generation spoken dialog in-
terfaces ([1]) and was manually annotated with a multi-layered
approach, including attribute-value information, Predicate-
Argument-Structure (PAS) and dialog acts ([12]). This cor-
pus includes human—human ( H H) dyadic conversations of Ital-
ian speakers engaged in a problem-solving task in the domain
of software/hardware troubleshooting, whereas the human—
machine (HM) dialogs were acquired with a Wizard of Oz
approach (WOZ) for the problem specification task only. In
the corpus preparation phase, we extracted for each token the
lemma, the turn id, the time-stamp and also the PAS label
when available. PAS annotation was carried out applying the
FrameNet paradigm as described in [13]. This annotation model
covers a set of prototypical situations called frames, the frame-
evoking words called lexical units or target words and the roles
or participants involved in these situations, called frame ele-
ments (FEs). The latter are typically the syntactic dependents of
the lexical units. All lexical units belonging to the same frame
have similar semantics and valence (for details about the anno-
tation scheme, see [12]). We adopted where possible the frame
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and frame element labels which were originally defined for the
English FrameNet project. Some new frame definitions were
introduced only in case of missing elements in the off-the-shelf
resource.

An example annotation of two dialog turns is reported in
Fig. 1. For each Italian utterance transcription, we annotate the
target words, the frame and its frame elements. The target words
(in bold) dire and chiamo are assigned to a frame label in cap-
itals, resp. TELLING and BEING_NAMED. This means that dire
evokes the prototypical situation that is defined as TELLING in
the FrameNet database, while chiamo evokes a situation called
BEING_NAMED. Given that a frame is also characterized by
some frame elements or semantic roles, Addressee and Mes-
sage are the FEs expressed in the first utterance for TELLING,
and Entity and Name in the second one for BEING_NAMED.

Figure 1: PAS Annotation: an example.

[Mi] puo dire [nome e cognome] per favore?

t_‘_J t_'_l
Addressee TELLING Message

(Eng. Translation: can you tell me name and surname please?)

[Mi] chiamo [ Alessandro Manzoni].
L )\ )
35
Entity BEING_
NAMED

T
Name

(Eng. Translation: my name is Alessandro Manzoni)

In this work, we focus primarily on the annotation of
target words, and in particular on the criteria for identifying
target words in a turn. In the early stages of the Berkeley
FrameNet project', one frame per sentence was annotated, so
just one target word was chosen in every sentence. More re-
cently, the Berkeley group has started also another annotation
effort, called continuous-text annotation, in which all possi-
ble valence-bearing words in a sentence are annotated as tar-
get words. In LUNA, we adopted an intermediate approach,
following the idea that all semantically relevant target words
with a syntactic subcategorization pattern have to be identified
and annotated, possibly skipping the utterances with empty or
fragmentary semantics (e.g. disfluencies). As expected, most
of the targets annotated with our approach are verbs (almost
71% of the occurrences, while 14% are nouns and the rest ad-
jectives and adverbs). In the FrameNet database, instead, the
occurrences of verbal targets w.r.t. other PoS are more evenly
distributed (44% verbs, 39% nouns, 16% adjectives), since the
annotated sentences were selected in order to be representative
of different frames, thus they are more balanced.

In order to assess the relation of the different annotation
levels in the LUNA corpus, we performed the alignment of the
multiple layers, viz. annotation of tokens, turns and PAS for
125 HH dialogs, mapping each token with turn ID and times-
tamp as well as with target / non-target) label. A summary of
the corpus statistics is reported in Table 1.

3. Acoustic features

Audio recordings of the LUNA spoken dialog corpus were
recorded as a mixed duplex channel with 8 KHz mono 16-
bit pulse-coded modulation (PCM). The recordings were seg-
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Table 1: LUNA corpus statistics for the training, development
and test sets.

[ Train [ Devel [ Test ‘

No. of dialogs used 94 11 20

No. of utterances used 4748 506 1131
Average no. of utterances per dialog | 50.51 | 46.00 | 56.55
Total no. of tokens 34123 3479 7912
Average utterance length (in tokens) 7.19 6.88 7.00
Average dialog length (in mins) 3.21 3.23 3.39
No. of unique tokens 3307 872 1388
No. of lemmas 2312 688 1017

No. of PoS tags 24 17 15

No. of unique frames 204 107 135

mented into speech dialog turns and transcribed by human an-
notators. Afterwards, these turns were annotated, as described
in the previous section. For the purposes of the experiment,
all words in the recordings were labeled either as “Non-target
word”, “Target word” or “Frame element”.

We have passed each individual turn through the forced
alignment procedure with the Italian language ASR trained with
the Sphinx-3 toolkit on the LUNA corpus.

We have extracted measurements of speech pitch (Fp), for-
mant trajectories (F,x = 1,2,3), intensity (/,¢) and har-
monicity (Ij,,-) with the standard algorithms provided in the
PRAAT toolkit [14]. We have performed all measurements over
a signal window of 40 ms with the frame rate of 100 Hz. The
latter two measurements were combined to obtain an estimation
of the intensity of a harmonic component (3,4, ) of the speech
signal. Employment of I},q,» was motivated by the possible ef-
fect of acoustic interferences like environmental noise or other
non speech-like sounds. Intensity of a harmonic component is
also believed to better correspond to the intensity of phonation
and paralinguistic stress. It is less distorted with wide-band en-
ergy bursts of plosives or fricatives. We have used the following
formula for the depicted combination:

M

Note that when Ijn, is high then I qrm ~ Ito:. However,
when I}, is sufficiently negative, then /54, can also become
negative.

The segmentation resulting from the forced alignment was
then used to extract token-specific estimates. These absolute
values were then compared to an average value of the given
measurement throughout a whole turn. The measurements per-
formed that way allow for a direct verification of the “code”-
theories. A statistical analysis of the relative features has re-
vealed that there exists a statistically significant difference be-
tween the mean values of the segmental relative features de-
pending on which role a given segment possesses.

The average deviation of the maximal intensity of the har-
monic component attained within a given segment from the av-
erage speech harmonic component intensity of the whole turn is
higher for target words as opposed to frame elements and non-
target words (see Fig. 2 for further detail). This observation is
predicted by the effort code. It is notable that a maximal—to—
mean intensity margin of the harmonic component has a clear-
ance of 8 db between the target and all other words. An iden-
tically measured margin for an entire signal intensity I:o+ does
not exceed 1.5 db. This fact confirms our conjecture that the har-
monic component intensity represents the paralinguistic stress
pattern in a better way.

Tnarm = Lot + Innr — 101og, o (10777710 4 1),
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Figure 2: Average deviation of the maximal within-segment
harmonic intensity from the corresponding average of the whole
turn (Y-axis).The measurements performed for all label types
(X-axis). Confidence intervals are given for p-value p = 0.05.

The average deviation of the minimal pitch frequency of
the voiced interval attained within a given segment from the
average pitch frequency of the whole turn is lower for target
words as opposed to others (see Fig. 3 for further detail). The
observation is in agreement with the frequency code.
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Figure 3: Upper Plot: Average deviation of the minimal within-
segment pitch frequency from the corresponding average of
the whole turn (Y-axis). The measurements performed for
all label types (X-axis). Confidence intervals are given for
p-value p 0.05. Lower Plot: Corresponding distribu-
tions P(AFy|Class), black — target words, white — non-target
words, gray — frame elements.

The pitch dynamic range of target words is approximately
15 Hz larger in comparison to the average dynamic range of all
of the words in that turn. This observation is in agreement with
the effort code. The measurement is statistically significant with
p = 0.05.

The average deviation of the mean duration of the voiced
interval within a given segment from the average duration of
the voiced intervals in the whole turn is larger for target words
as opposed to frame elements and non-target words. At this
point we did not reach a conclusion if voicing duration rep-
resents an independent feature or is a byproduct of the gener-
ally increased intensity of the harmonic speech component. The
PRAAT performs pitch measurements through the use of a cor-
relation statistics. Allegedly, it is able to uncover and track more
intense harmonic structures from larger distances. We have ad-
ditionally performed an analysis of the duration of the individ-
ual phonemes as it was recorded during the forced alignment.
But we have not found a consistent pattern, that depends on the
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role of the segment under consideration.

The average inter-frame formant frequency difference (F»
and F3) is larger in comparison to the utterance mean for target
words as opposed to frame elements and non-target words (see
Fig. 4 for further detail). The formant dynamics is in agreement
with the effort code. However, we expect the formant features to
be more informative if this formant dynamics gets conditioned
on the particular phoneme that is being uttered.

ERE e

-2 4

Average deviation, Hz

F1

F1

-3 . .
F2 F3
Frame elements

F2 F3
Target words

CEEa
Non-target words
Figure 4: Average deviation of the average interframe formant
frequency deltas from the corresponding utterance average (Y-
axis). The measurements performed for three first formants

“F17, “F2”, “F3”. Confidence intervals are given for p-value
p = 0.05.

4. Target Word Classification with lexical
features

The classification experiment involved identifying each token
of a presegmented utterance as either a target word or a non-
target word i.e. a binary classification task. This task was done
using lexico-syntactic features: (a) Part-of-Speech (PoS) tags
automatically added with the Chaos parser [15]. (b) Lemma in-
formation, annotated with TreeTagger[16]. Human PAS anno-
tation is primarily dependent on these two types of information
for target / non-target word classification. Two further features
comprise (c¢) lowercased token and its (d) previous token, in-
cluding utterance boundary information.

The experiment was carried out using BoosTexter[17] clas-
sifier, that uses AdaBoost algorithm, which is initialized with
a set of weak hypotheses by calling these weak classifiers in a
series of iterations, and finally combining the weak hypotheses
into a single rule.

For this task, baseline was established by using only tokens
as feature; the number of iterations was optimized for minimum
false rejection rate, determined by best performance over the
development data. To evaluate the classification performance,
test output was scored using precision, recall, and F'1-measure.
Table 2 shows all results produced as baseline, single features
and features in combination.

Table 2: Results with Baseline, Single and Combined Features

l Features [ Precision [ Recall [ Fl-measure ‘
| Baseline (token) [ 0759 [ 0648 | 0699 ]
PoS 0.655 0.825 0.730
Lemma 0.764 0.747 0.755
Token+PoS 0.787 0.800 0.793
Token+lemma+PoS 0.797 0.803 0.800
Token+Prev_tok+PoS 0.765 0.857 0.808
| Token+Prev_tok+lemma+PoS | 0.782 [ 0841 [ 0810




We observe that combined features: lowercased tokens,
lemmas and PoS tags already achieve a better performance com-
pared to baseline, since all these in combination convey a good
amount of information about target words. The “previous to-
ken” feature adds a context to the combined classifier (i.e. the
lowercased token, its lemma and PoS tag). Thus, the result is
further improved using all four features in combination.

5. Combination of Lexical and Acoustic
features

The effectiveness of the acoustic measurements in predicting
target word classification task has been evaluated in combina-
tion with the lexical features. A multilayer perceptron (MLP)
and a support vector machine (SVM) were used as classifiers for
the acoustic features driven classifier. The MLP had one hidden
layer with only 200 neurons. The output layer had two neurons
corresponding to the two class labels that are being trained in
the supervised way - “a target word” and “not a target word”.
The SVM was using a linear kernel. The feature vector con-
tained all of the features depicted above.

The resulting classifiers on the test set were able to at-
tain a performance level being F'1 0.3747 for MLP and
F1 =~ 0.3397 for SVM. The chance performance on the same
test set has F'1 ~ 0.2972. Thus, it is possible in principle to
use acoustic information to infer semantics of a given segment.
As is illustrated by Fig. 3, the histograms of distributions of
features are almost overlapping. It is a large number of experi-
ments that allows us to record a statistically significant shift in
the mean values of the features. We expect that better employ-
ment of a turn context may improve recognition performance.

Another possibility is to integrate results of acoustic clas-
sification over multiple instances of the same word. This leads
to a potential application of the acoustic classifier in automated
language acquisition. The words, and in general the whole lin-
guistic contexts, which are consistently being marked as the
frame-generating targets by the acoustic classifier may be incor-
porated into a model of the linguistic classifier, thus enabling an
autonomous acquisition of the linguistic model from the spoken
data only.

~
~

Table 3: Performances of the best lexical and acoustic feature
based classifiers and their oracle performances on the target
word classification task .

Classifier Prec. | Recall F1

Lexical Features 0.782 | 0.841 | 0.810
Acoustic Features 0.247 | 0.774 | 0.375
Oracle Combination 0.935 | 0913 | 0.924
Baseline Linguistic Classifier 0.759 | 0.648 | 0.699
Oracle Comb. (+ best acoustic) | 0.926 | 0.811 | 0.865

As shown in Table 3, the figure of merit of combined sys-
tems could be as high as 92,4%. The combination of both
acoustic and linguistic classifiers has the potential to be very
accurate.

6. Conclusion

In the experiments with large amounts of spoken data we have
observed a statistically significant deviation of the means of ob-
jectively measured segment parameters depending on the mean-
ing of that segment. As such, our observation confirms our ini-
tial conjecture regarding the acoustic features grounding of the
semantic elements within an utterance. Our findings support
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the theories of speech prosody and the effects of frequency and
effort codes. An other important result is the correlation be-
tween acoustic measurements and a semantic representation of
meaning that is linguistically motivated and consistent across
domains. The preliminary classification experiments of the fine
semantic structure elements are very encouraging and motivate
the combination of acoustic and lexical features.
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