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ABSTRACT

We are interested in the problem of semantics-aware train-
ing of language models (LMs) for Automatic Speech Recog-
nition (ASR). Traditional language modeling research have
ignored semantic constraints and focused on limited size his-
tories of words. Semantic structures may provide information
to capture lexically realized long-range dependencies as well
as the linguistic scene of a speech utterance. In this paper,we
present a novel semantic LM (SELM) that is based on the the-
ory of frame semantics. Frame semantics analyzes meaning
of words by considering their role in the semantic frames they
occur and by considering their syntactic properties. We show
that by integrating semantic frames and target words into re-
current neural network LMs we can gain significant improve-
ments in perplexity and word error rates. We have evaluated
the semantic LM on the publicly available ASR baselines on
the Wall Street Journal (WSJ) corpus. SELMs achieve 50%
and 64% relative reduction in perplexity compared to n-gram
models by using frames and target words respectively. In ad-
dition, 12% and 7% relative improvements in word error rates
are achieved by SELMs on the Nov’92 and Nov’93 test sets
with respect to the baseline tri-gram LM.

Index Terms— Language Modeling, Recurrent Neural
Networks, Frame Semantics, Semantic Language Models

1. INTRODUCTION

Language models (LMs) constrain the search space of auto-
matic speech recognition (ASR) systems by estimating prob-
abilities for possible sequences of words. The most widely
used LMs are n-grams. However, as discussed in [1] n-grams
consider almost no linguistic information. One of the prob-
lems related with this is the locality problem [2], i.e. n-grams
are based on fixed length of histories and they fail to capture
long-range dependencies. As stated by [2] long-range depen-
dencies can be handled in LMs either by syntactic information
or semantic information. In this paper, we show how linguis-
tically aware LMs can be built by using semantic information
that is based on the theory of frame semantics.

The research leading to these results has received funding from the Euro-
pean Union – Seventh Framework Programme (FP7/2007-2013) under grant
agreement No. 610916 – SENSEI.

Long-distance modeling has been addressed by using trig-
ger based LMs [3]. In this case, the probability estimates of
word sequences are modified by the co-occurrence of their
triggers. Linguistic information was encoded into LMs by [4]
where the next-word probabilities are estimated using the syn-
tactic structures generated by the parser. Although the mean-
ing of speech utterance is of primary importance in human-
machine spoken interaction, semantics for LMs has received
little attention. This is due to the limitations of a) general the-
ory of semantics suitable for language modeling b) accurate
and fast semantic parser. The advantages of semantic features
in LMs are a) early semantic constraint processing for ASR
and b) extendible approach multimodal and situated language
modeling and understanding. The most notable use of seman-
tics in LM is the latent semantic analysis work in [2] and the
recognition for understandingLM training in [5]. Recent im-
provements in LMs came from the introduction of neural net-
work LMs (NNLMs) [6]. NNLMs project the discrete word
space onto a continuous space, in this way probability dis-
tributions of words can be estimated effectively [7]. Feed-
forward NNLMs use a fixed history, on the other hand, recur-
rent NNLMs (RNNLMs) [8] use recurrent connections and
model a short term memory that represents the state of the
network. In [9], a cache NNLM is presented for spoken lan-
guage understanding tasks, which uses an additional cache
layer. Context dependent RNNLMs are presented in [10],
which use an additional layer similar to the cache NNLM.
This additional layer models the long-span context.

In this paper we exploit the theory of Frame Semantics
to train language models for ASR. Frame semantics is an
area of lexical semantics where the meaning of words are
analyzed in the frames that they occur [11] — the linguis-
tic scene. In this paper, we propose and evaluate the auto-
matic training algorithms for SELMs. We demonstrate how
frame semantics can be used to improve the performance of
LMs. We use the frames evoked and the frame-evoking pred-
icates as semantic features. For this purpose, context depen-
dent RNNLMs are used with semantic features as context. We
evaluate the performance of semantic LMs over perplexity on
Wall Street Journal part of Penn-Treebank and over word er-
ror rate (WER) on the Wall Street Journal (WSJ) speech cor-
pus.

This paper is organized as follows. Section 2 describes the



semantic feature extraction step. Section 3 gives the details
of SELMs. Section 4 presents the perplexity results on Penn-
Treebank. Section 5 explains how semantic LMs can be used
for re-scoring N-best ASR hypotheses, and presents the WER
results on WSJ corpus. Finally, section 6 gives concluding
remarks.

2. SEMANTIC FEATURE EXTRACTION

Frame semantics is a theory of lexical meaning where word
meanings are described in the context of semantic frames,
which are evoked by linguistic forms. FrameNet is a project
which analyzes semantic frames and word meanings in re-
lation to these frames. In this framework, words can evoke
semanticframesdepending on their senses. Frame evoking
words are calledtarget words or targets. On the other hand,
they can participate in frames to complete the meaning, then
they are calledframe elements. In this paper, we useframes
andtargetsfor semantic feature extraction [11].

Frame semantic parsing is the process of extracting the se-
mantic information that corresponds to target words, frames
evoked, and frame elements. We have used the open-source
frame-semantic parser, SEMAFOR [12], for extracting se-
mantic features. SEMAFOR performs semantic parsing in
three steps. The first step is the rule-based target identifi-
cation step, in which the frame evoking predicates, i.e. the
targets, are recognized. The next step identifies the frames
evoked by these predicates by using a statistical model. The
frame elements are filled as the final step by using another
statistical model. SEMAFOR relies on the output of a depen-
dency parser. The reader should refer to [12] for a detailed
description of SEMAFOR semantic parser.

The SELM uses two different semantic features. Each ut-
terance is passed through SEMAFOR frame-semantic parser,
and framesand targetsare extracted. Then a semantic fea-
ture vector is constructed based on this information. When
framesare used, we set the index of the evoked frames to 1
and the rest to 0 to create the feature vector. When creating
feature vectors we do not consider the frequencies, therefore
even if aframeis evoked more than once its index is set to 1;
as shown in Figure 1. We create the feature vectors fortar-
getssimilarly. These feature vectors are used as thesemantic
contextfor that utterance in the SELM. Therefore, for each
utterance thesemantic contextis fixed.

3. SELM STRUCTURE

The SELMs presented in this paper, use RNNLMs as the main
building block. RNNLMs have been introduced in [8] and are
shown to reduce perplexity and WER significantly. We have
used a similar structure to context dependent RNNLMs that
are introduced in [10]. RNNLMs employ recurrent connec-
tions to represent the state of the network through time. This
state, together with the current word, constitute the history
that the probability of the next word is estimated on.

The main complexity of an RNNLM depends on the size

Fig. 1. Semantic feature extraction. An utterance is fed to the
SEMAFOR frame semantics parser as input, the parser out-
puts the frames evoked for that utterance. The feature vector
is created by using the output of the semantic parser.

of the vocabulary. One of the solutions to this problem is
to use class-based RNNLMs that are presented in [13]. It is
also possible to train a maximum-entropy model that uses n-
gram features together with an RNNLM, which is shown to
improve WER [14]. RNNLMs that use a maximum-entropy
model with n-gram features are referred to as RNNME mod-
els [14, 10]. In this paper, we have used the open-source
RNNLM toolkit [15]. The toolkit already employs the class-
based approach and the maximum-entropy model training.
We have modified the toolkit and added a context layer which
would be used as the semantic context.

RNNLMs are composed of an input layer which has the
size of the vocabulary, a hidden layer which has recurrent
connections to the recurrent layer that represent the hid-
den state of the network, and an output layer. The output
layer, in the class-based implementation, estimates the word
probabilities by factorizing them into class probabilities and
class-membership probabilities. The input is encoded as 1-
of-n encoding. In SELMs an additional context layer is used
to represent the semantic context for the current utterance.
The SELM is depicted in Figure 2. The SELM is trained by
using the backpropagation through time (BPTT) algorithm,
where the network is unfolded forN time steps back and the
weights are updated by using the standard backpropagation
algorithm [8]. The maximum-entropy model that uses n-
gram features are implemented as direct connections between
n-gram histories and the output layer (which are not shown
in the figure), n-gram histories are further implemented by
hashing. The details of this implementation can be found
in [14].

3.1. Word prediction with SELM: an example
The intuitive idea behind SELMs is that the linguistic scene
that is constructed by semantic information would help to pre-
dict relevant words better. We show how this works practi-
cally on the following sentence from Penn-Treebank:
“While Friday’s debacle involved mainly professional traders



Fig. 2. The SELM structure that is based on the class-based
RNNLM structure. The network takes the current wordwt

and the semantic contextsc for the current utterance as input.
In addition the previous hidden state is copied into the recur-
rent layerst−1. The output layer estimates the probability
for the next wordwt+1 factorized into class probabilities and
class-membership probabilities (clt+1 denotes the recognized
class for the next word). Therefore these probabilities are
conditioned on the current wordwt, the previous statest−1

and the semantic contextsc. The direct connections from n-
gram histories to output layers are not shown.

rather than investors, it left themarket vulnerable to contin-
ued selling this morning, traders said.”

When passed through the semantic parser, the parser rec-
ognizes the following frames:
Calendric unit, Catastrophe, Participation, People by voca-
tion, Commerce scenario, Departing, Being at risk, Activ-
ity ongoing,Commerce sell, Calendric unit,Commerce sce-
nario, Statement

We demonstrate how the probability for the wordmarket
(shown in bold), which is not a target, is estimated by some
of the LMs that are presented in Section 4. In addition, we re-
place the word,market, with an irrelevant word,computer, in
the same sentence. The probability estimates formarketand
computerin the same context by an n-gram LM, a standard
RNNME model, and a SELM are given in Table 1.

Table 1. Probability estimates of the wordmarketand the
substituted wordcomputergiven the history (h). For the 5-
gram LM,h is the preceding words; and for the RNNME the
preceding word and the hidden state.h, for the SELM is the
preceding word, the hidden state and the semantic frames.

Model P(market| h) P(computer| h)
Kneser-Ney 5-gram 4.2× 10−3 8.2× 10−4

RNNME 6.9× 10−3 1.8× 10−3

SELM on Frames 1.2× 10−2 1.9× 10−5

As can be seen in Table 1, SELM that usesframesas se-
mantic context, estimates a higher probability for the relevant
word, market. In addition, it assigns a lower probability to
an irrelevant word,computer. We believe that, the linguistic
scene built by semantic framesCommerce scenarioandCom-
merce sellare effective in this better estimation.

4. PENN-TREEBANK EXPERIMENTS

In this section we present the perplexity results on the publicly
available Penn-Treebank part of the WSJ corpus. The experi-
ments presented here are performed on the same data and with
the same preprocessing steps (with the same training/testing
partitions and the same vocabulary) given in [16, 17, 10].

The preprocessing steps involve representing numerical
values with the special token“N” and limiting the vocabulary
to the most frequent 10K tokens, all other tokens are mapped
to anunknowntoken. We have used the following split. Sec-
tions 0-20 are used for training, sections 21-22 are used as the
development set, and sections 23-24 are used as the evalua-
tion set. The number of tokens are 930K, 74K, and 82K for
training, development and evaluation sets respectively.

The semantic features are extracted on the raw data that is
not preprocessed. Therefore, the raw data is fed to the se-
mantic parser and semantic features are extracted over the
frames and the targets by using the semantic feature extrac-
tion step. For the Penn-Treebank we have 819 distinct frames
and 11271 distinct targets in the training set.

We have trained a 5-gram Kneser-Ney LM with singleton
cut-offs (KN5), a 4-gram feed-forward NNLM that has 160
nodes in the hidden layer and uses 200 word classes that are
assigned with respect to their frequencies (FF4), and a RN-
NME model that uses the same clustering of words, it has
150 nodes in the hidden layer and uses 4-gram features for
the maximum entropy model with a size of109 connections
(RNNME). The NNLMs are optimized over the perplexities
on the development set for their size of hidden layers and their
random initializations.

The SELMs we have built are RNNME models with se-
mantic context. The SELMs are trained with the semantic
context over frames (“SELM on Frames”) and over targets
(“SELM on Targets”). All SELMs use 200 word classes that
are same with the previous NNLMs to reduce the computa-
tional complexity of training, and they use 4-gram features
for the maximum entropy model with a size of109 connec-
tions. They have 200 nodes in the hidden layer. In addition
to these models, we have trained SELMs by using the most
frequent frames and targets that cover the 80% of the training
data. This reduces the size of distinct frames to 181 and dis-
tinct targets to 1386, therefore this also reduces the computa-
tional complexity of the training procedure. The perplexities
of all LMs are presented in Table 2.

We have achieved 50% and 64% relative reduction in per-
plexity with respect to the Kneser-Ney 5-gram LM by using
frames and targets as semantic context. In addition, we have



Table 2. Perplexity results on Penn-Treebank part of the Wall
Street Journal corpus. SELMs achieve 50% and 64% relative
reduction in perplexity with respect to Kneser-Ney 5-gram
model when frames and targets are used as semantic context
respectively.

Model Dev PPL Test PPL
KN5 148.0 141.2
FF4 165.9 156.3
RNNME 133.6 127.9
SELM on Frames 73.7 70.3
SELM on 80% Frames 84.6 81.4
SELM on Targets 53.8 51.1
SELM on 80% Targets 63.3 60.5

achieved 5% and 31% relative reduction in perplexity with
respect to the lowest reported results in [10]. Restrictingthe
frame size and targets to a coverage of 80% also achieves a
good reduction in perplexity. Therefore, for the re-scoring
ASR experiments on a larger corpus, we have used the frames
and targets with 80% coverage to reduce the training com-
plexity.

5. WALL STREET JOURNAL EXPERIMENTS

In this section we present the results on N-best re-scoring
experiments on the WSJ speech recognition task. All of the
experiments presented in this section are performed by using
the publicly available WSJ0/WSJ1 (DARPA November’92
and November’93 Benchmark) sets. The acoustic models are
trained on the WSJ0/WSJ1 training utterances also known as
SI-284. All the development data under WSJ1 for speaker
independent 20k vocabulary is used as the development set
(“Dev 93” - 503 utterances). The evaluation is done on the
November 92 CSR Speaker independent 20k NVP test set
(“Test 92” - 333 utterances) and on the November 93 CSR
HUB 1 test set (“Test 93” - 213 utterances).

5.1. ASR baseline
The baseline ASR system is built by using the Kaldi speech
recognition toolkit [18]. This system generates the N-best
lists that are used for re-scoring. The vocabulary is set to
20K by using the 20K open vocabulary word list for non-
verbalized punctuation that is available in WSJ0/WSJ1 cor-
pus. The language model that the baseline system uses is
the baseline tri-gram backoff model for 20K open vocabu-
lary for non-verbalized punctuation that is also availablein
WSJ0/WSJ1 corpus.

The acoustic models are trained over the SI-284 data by
using the publicly available Kaldi recipe with the following
settings. MFCCs features are extracted and spliced in time
with a context window of[−3,+3]. Linear discriminant
analysis (LDA) and maximum likelihood linear transform
(MLLT) are applied. Triphone Gaussian mixture models are
trained over these features.

The ASR baseline performs weighted finite state decod-
ing. We have extracted 100-best lists for each development
and evaluation set. The performance of ASR baseline is given
in Table 3.

Table 3. The WER performance of the ASR baseline system
on Dev 93, Test 92, and Test 93 sets.

Dev 93 Test 92 Test 93
ASR 1-best 15.3% 10.2% 14.0%
Oracle on 100-best 8.3% 5.1% 7.3%

5.2. Re-scoring experiments
Re-scoring experiments are performed on the 100-best lists
that are generated by the baseline ASR system. These 100-
best lists are re-scored by using the SELMs. In addition, we
have trained n-gram LMs and NNLMs to better compare the
SELMs with. All LMs are trained over the whole WSJ 87,
88, and 89 data with the vocabulary that is limited to the 20K
open vocabulary for non-verbalized punctuation. The LMs
for comparison include a Kneser-Ney 5-gram model with sin-
gleton cut-offs (KN5), a 4-gram feed-forward NNLM that has
240 nodes in the hidden layer and with a projection layer of
size 64 (FF4), and a RNNME model that has 20 nodes in
the hidden layer and uses a maximum-entropy model that has
4-gram features with109 connections (RNNME). The KN5
model is built on words without any classes. However, to
reduce the training time FF4 and RNNME are trained by us-
ing 200 word classes that are constructed with respect to the
frequencies of the words. The NNLMs are tuned to the low-
est WER on the development set by using different sizes of
hidden layers and with different random initializations. The
performances of these models are given in Table 4.

Table 4. The WER performance of the 5-gram LM, the feed-
forward LM, and the RNNME model.

Model Dev 93 Test 92 Test 93
KN5 14.5% 9.6% 13.4%
FF4 14.6% 9.6% 13.9%
RNNME 14.2% 9.3% 13.1%

We have trained SELMs that use frames and targets as
semantic context separately. The SELMs are also trained on
the same data with the same vocabulary setting. They use the
same word classes that are used by the previous NNLMs. The
semantic features for each utterance in the training data are
extracted by feeding them to the semantic parser SEMAFOR.
The training data has 841 distinct frames and 17736 distinct
targets. We have limited the number of frames and targets to
the most frequent ones that cover the 80% of the training data,
which results in 184 distinct frames and 1182 distinct targets.
We have trained the SELMs by using the BPTT algorithm on
the training data. We have used the reference transcription
and reference semantic context of the Dev 93 set as the vali-
dation set for early stopping to avoid overfitting.



Fig. 3. The flow of re-scoring experiments. The test utterance
is passed through the baseline ASR. The ASR 1-best hypoth-
esis is given to the semantic feature extraction module, which
extracts the semantic context for that utterance. The N-best
list is re-scored by using the SELM with the semantic context
for that utterance.

The re-scoring experiments by using the semantic LMs
are conducted by using the following setting. The seman-
tic context for the utterance that will be re-scored can be ex-
tracted either from the reference transcription, oracle hypoth-
esis, or the ASR hypothesis. Naturally, the experiments that
use the semantic context of the ASR hypothesis will reflect
the real performance. The others can be used to see the upper
bound of the performance. Therefore, we refer to the output
of the semantic parser as follows. The output of the seman-
tic parser (frames and targets) on the reference transcription
are referred to asreference frames and reference targets. The
output of the parser on the ASR output are referred to asASR
frames and ASR targets. Finally, the output on the oracle
hypotheses are referred to asoracle frames and oracle tar-
gets. We present the results on reference frames/targets and
on oracle frames/targets to present an upper bound on the per-
formance of the SELMs, the actual performance is given by
the ASR frames/targets. The re-scoring procedure for ASR
frames/targets is depicted in Figure 3.

Table 5. The WER performance of the SELMs. The bold
WERs (ASR Frames and ASR Targets) present the actual per-
formance. Results on the reference and oracle frames/targets
are given to show an upper bound.

Model Dev 93 Test 92 Test 93
SELM on Frames

Reference Frames 13.4% 8.7% 12.3%
Oracle Frames 13.2% 8.7% 12.0%
ASR Frames 14.5% 9.5% 13.9%

SELM on Targets
Reference Targets 12.9% 8.4% 11.7%
Oracle Targets 12.9% 8.4% 11.6%
ASR Targets 15.0% 10.0% 14.4%

As can be seen in Table 5 when accurate semantic infor-
mation (reference frames/targets and oracle frames/targets) is
used as the semantic context, the SELMs achieve a signifi-
cant improvement in WER. Target words, since they are more
constraining on semantics, give better results. However, ac-

tual performance, i.e. when the ASR frames and targets are
used, is affected by the noise in the semantic context. We also
observe that frames as semantic features are more robust to
this noise.

5.3. Making sense of semantic context
The results in Table 5 show the potential performance of
SELMs. When SELMs are supplied with accurate semantic
context, their performance significantly improves. However,
the noise on the ASR frames and targets drops their perfor-
mance to an unacceptable range. Therefore to improve the
actual performance, thus to lower the noise on the seman-
tic context, we have eliminated the frames and targets that
have high error rate on the ASR hypothesis. This error is
computed on ASR frames and targets with respect to the ref-
erence frames and targets. Thus, we have eliminated these
frames and targets which have an error rate of 10% on the
development set. After elimination, we have ended up with
60 distinct frames and 541 distinct targets. The SELMs are
trained from scratch by using this subset of frames and tar-
gets and re-scoring experiments are repeated with these new
SELMs. The performance of the these models is given in
Table 6.

Table 6. Improved WER performance of the SELMs by us-
ing low error frames and targets. The results show that by
eliminating erroneous frames and targets, we can get signif-
icant improvements on WER with ASR frames and targets
(given in bold). The SELM on Frames achieve 12% relative
improvement on Test 92 evaluation set and 7% relative im-
provement on Test 93 evaluation set with respect to the ASR
baseline.

Model Dev 93 Test 92 Test 93
SELM on Frames

Reference Frames 13.6% 8.9% 13.0%
Oracle Frames 13.5% 8.9% 12.8%
ASR Frames 13.8% 9.0% 13.0%

SELM on Targets
Reference Targets 13.7% 8.9% 13.1%
Oracle Targets 13.7% 8.9% 13.0%
ASR Targets 13.9% 9.5% 13.9%

The results on Table 6 show that eliminating the erroneous
frames and targets yields significant improvement with ASR
frames and targets. Since this elimination is done on the de-
velopment set, the development set benefits more, especially
on ASR targets. The SELM with ASR frames achieves a rela-
tive improvement of 12% and 7% on Test92 and Test 93 eval-
uation sets with respect to the ASR baseline.

5.4. Model combination
It is possible to obtain more improvement by linearly inter-
polating NNLMs with n-gram models. We have optimized
the weights of linear interpolation over WER on the Dev 93
set. Table 7 presents the combination of two models. The



first one is the combination of the 5-gram model (KN5) with
the RNNME model (Table 4, RNNME). The second one is
the combination of the 5-gram model (KN5) with the SELM
on ASR Frames (Table 6, SELM on Frames). We observe
that the combination with the SELM gives a better perfor-
mance than the combination with the RNNME model. The
combination with the SELM achieves 14% and 11% relative
improvement with respect to the ASR baseline on Test 92 and
Test 93 respectively.

Table 7. Linear interpolation of LMs. The combination with
the SELM gives a better performance than the combination
with the RNNME.
Model Dev 93 Test 92 Test 93
KN5 + RNNME 13.8% 9.2% 13.0%
KN5 + SELM on ASR Frames 13.4% 8.8% 12.5%

6. CONCLUSION

Semantic information helps to capture the long-span depen-
dencies that linguistic constructions have. This paper presents
a novel SELM that is based on the theory of frame semantics.
We have constructed SELMs by using context dependent RN-
NME models. The semantic context is extracted from evoked
frames and targets in an utterance. We have achieved signifi-
cant reductions in perplexity on Penn-Treebank. In addition,
by performing re-scoring experiments on WSJ speech recog-
nition corpus, we have obtained significant improvements in
WER by using SELMs that use frames as semantic context.
We observe that SELMs on frames performs better than stan-
dard RNNME models even in model combination with n-
gram models.
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