SEMANTIC LANGUAGE MODELS FOR AUTOMATIC SPEECH RECOGNITION
Ali Orkan Bayer and Giuseppe Riccardi

Signals and Interactive Systems Lab - University of Trelitdy
{bayer, riccardi }@lisi.unitn.it

ABSTRACT Long-distance modeling has been addressed by using trig-
rger based LMs [3]. In this case, the probability estimates of
word sequences are modified by the co-occurrence of their
triggers. Linguistic information was encoded into LMs by [4
here the next-word probabilities are estimated usingythe s
tactic structures generated by the parser. Although theamea

i ture lexicall lized | d denciesa ing of speech utterance is of primary importance in human-
0 capture lexically realized long-range dependenciesas W ., .pine spoken interaction, semantics for LMs has received

as the linguistic scene of a speech utterance. In this PaRer, ;e arention. This is due to the limitations of a) gerlahe-

presentanovel sema_mnc LM (SELM) th?‘ is based on the the(Sry of semantics suitable for language modeling b) accurate

S . . . "Wd fast semantic parser. The advantages of semanticdsatur
of words by considering their role in the semantic framegy the .

db iderina thei tact ies. Wansh in LMs are a) early semantic constraint processing for ASR
occurand by considering their Syntactic properties. VWawsho b) extendible approach multimodal and situated languag
that by integrating semantic frames and target words into r

i | network LM in sianificant i emodeling and understanding. The most notable use of seman-
current neural networ S We can gain Significant IMprove=; .« i, | \ is the latent semantic analysis work in [2] and the

ments in perplexity and word error rates. We have evaluateldecognition for understandingM training in [5]. Recent im-
the semantic LM on the publicly available ASR baselines o rovements in LMs came from the introduction of neural net-
the Wall Street Journal (WSJ) corpus. SELMs achieve 50%,0rk LMs (NNLMSs) [6]. NNLMs project the discrete word
and 64% reIaFive reduction in perplexity compared_ to n-gra pace onto a continuous space, in this way probability dis-
models by using frames and target words respectively. In a ributions of words can be estimated effectively [7]. Feed-
dition, 1_2% and 7% relative improvements in word error rate%orward NNLMs use a fixed history, on the other hand, recur-
are achieved by SELMS_O” the Nov’92 and Nov'03 test Set?ent NNLMs (RNNLMs) [8] use recurrent connections and
with respect to the baseline tri-gram LM. model a short term memory that represents the state of the
Index Terms— Language Modeling, Recurrent Neural network. In [9], a cache NNLM is presented for spoken lan-
Networks, Frame Semantics, Semantic Language Models guage understanding tasks, which uses an additional cache
layer. Context dependent RNNLMs are presented in [10],
which use an additional layer similar to the cache NNLM.
1. INTRODUCTION This additional layer models the long-span context.
Language models (LMs) constrain the search space of auto- In this paper we exploit the theory of Frame Semantics
matic speech recognition (ASR) systems by estimating prokto train language models for ASR. Frame semantics is an
abilities for possible sequences of words. The most widelyarea of lexical semantics where the meaning of words are
used LMs are n-grams. However, as discussed in [1] n-gramgnalyzed in the frames that they occur [11] — the linguis-
consider almost no linguistic information. One of the prob-tic scene. In this paper, we propose and evaluate the auto-
lems related with this is the locality problem [2], i.e. ragrts  matic training algorithms for SELMs. We demonstrate how
are based on fixed length of histories and they fail to capturlame semantics can be used to improve the performance of
long-range dependencies. As stated by [2] long-range depenMs. We use the frames evoked and the frame-evoking pred-
dencies can be handled in LMs either by syntactic infornmatio icates as semantic features. For this purpose, contexhdepe
or semantic information. In this paper, we show how linguis-dent RNNLMs are used with semantic features as context. We
tically aware LMs can be built by using semantic informationevaluate the performance of semantic LMs over perplexity on
that is based on the theory of frame semantics. Wall Street Journal part of Penn-Treebank and over word er-
, _ _ ror rate (WER) on the Wall Street Journal (WSJ) speech cor-
The research leading to these results has received fundimgthe Euro-

pean Union — Seventh Framework Programme (FP7/2007-2013) grade pus. ) ] ) ) )
agreement No. 610916 — SENSEI. This paper is organized as follows. Section 2 describes the

We are interested in the problem of semantics-aware trai
ing of language models (LMs) for Automatic Speech Recog
nition (ASR). Traditional language modeling research hav
ignored semantic constraints and focused on limited size hi
tories of words. Semantic structures may provide inforamati




semantic feature extraction step. Section 3 gives theldletai | wnie Friday's debacle involved mainly professional traders rather than investors,
of SELMSs. Section 4 presents the perplexity results on Penr it left the market vulnerable to continued selling this moming, traders said.

Treebank. Section 5 explains how semantic LMs can be use
for re-scoring N-best ASR hypotheses, and presents the WE
results on WSJ corpus. Finally, section 6 gives concluding
remarks. l

2. SEMANTIC FEATURE EXTRACTION

Frame semantics is a theory of lexical meaning where wor:
meanings are described in the context of semantic frame
which are evoked by linguistic forms. FrameNet is a project
which analyzes semantic frames and word meanings in re
lation to these frames. In this framework, words can evoke
semanticframesdepending on their senses. Frame evoking=ig. 1. Semantic feature extraction. An utterance is fed to the
words are calledarget words or targetsOn the other hand, SEMAFOR frame semantics parser as input, the parser out-
they can participate in frames to complete the meaning, theputs the frames evoked for that utterance. The feature vecto
they are calledrame elementsin this paper, we usames s created by using the output of the semantic parser.
andtargetsfor semantic feature extraction [11]. ' ' _
Frame semantic parsing is the process of extracting the sef the vocabulary. One of the solutions to this problem is
mantic information that corresponds to target words, framel0 Use class-based RNNLMs that are presented in [13]. Itis
evoked, and frame elements. We have used the open-sourdi§0 Possible to train a maximum-entropy model that uses n-
frame-semantic parser, SEMAFOR [12], for extracting segram features together with an RNNLM, wh|(_:h is shown to
mantic features. SEMAFOR performs semantic parsing inTProve WER [14]. RNNLMs that use a maximum-entropy
three steps. The first step is the rule-based target identifffodel with n-gram features are referred to as RNNME mod-
cation step, in which the frame evoking predicates, i.e. th&!S [14, 10]. In this paper, we have used the open-source
targets, are recognized. The next step identifies the framd¥NNLM toolkit [15]. The toolkit already employs the class-
evoked by these predicates by using a statistical model. THE#sed approach and the maximum-entropy model training.
frame elements are filled as the final step by using anothéf/e have modified the toolkit qnd added a context layer which
statistical model. SEMAFOR relies on the output of a depenWould be used as the semantic context. .
dency parser. The reader should refer to [12] for a detailed RNNLMs are composed of an input layer which has the
description of SEMAFOR semantic parser. size of the vocabulary, a hidden layer which has recurrent
The SELM uses two different semantic features. Each ut€onnections to the recurrent layer that represent the hid-
terance is passed through SEMAFOR frame-semantic pars&ien state of the network, and an output layer. The output
andframesandtargetsare extracted. Then a semantic fea-/aYer, in the class-based implementation, estimates thd wo
ture vector is constructed based on this information. WheRrobabilities by factorizing them into class probabiktiand
framesare used, we set the index of the evoked frames to §/ass-membership probabilities. The input is encoded as 1-
and the rest to 0 to create the feature vector. When creatirff-" €nceding. In SELMs an additional context layer is used

feature vectors we do not consider the frequencies therefolO represent the semantic context for the current utterance
even if aframeis evoked more than once its index is set to 1: The SELM is depicted in Figure 2. The SELM is trained by

as shown in Figure 1. We create the feature vectorsaier ~USing the backpropagation through time (BPTT) algorithm,
getssimilarly. These feature vectors are used asséaantic Where the network is unfolded fov time steps back and the:
contextfor that utterance in the SELM. Therefore, for eachWeights are updated by using the standard backpropagation

‘ SEMAFOR FrameNet Parser

| Calendric unit,..., Commerce scenario, ..., Departing, Calendric unit, Commerce scenario,...

[0,0,1,1,00,1..........1,00,1,0,1,0,0]

utterance theemantic contesit fixed. algorithm [8]. The maximum-entropy model that uses n-
gram features are implemented as direct connections betwee
3. SELM STRUCTURE n-gram histories and the output layer (which are not shown

h i thi h in the figure), n-gram histories are further implemented by
T §$ELMS presented in this paper, use RNNLMS ast ema'ﬂashing. The details of this implementation can be found
building block. RNNLMs have been introduced in [8] and are; [14]

shown to reduce perplexity and WER significantly. We have
used a similar structure to context dependent RNNLMs tha8.1. Word prediction with SELM: an example
are introduced in [10]. RNNLMs employ recurrent connec-The intuitive idea behind SELMs is that the linguistic scene
tions to represent the state of the network through times Thithat is constructed by semantic information would help & pr
state, together with the current word, constitute the hysto dict relevant words better. We show how this works practi-
that the probability of the next word is estimated on. cally on the following sentence from Penn-Treebank:

The main complexity of an RNNLM depends on the size*While Friday’s debacle involved mainly professional texd



P(w,

el w, s, sc) P(l,, |w,s,, sc) As can be seen in Table 1, SELM that u§esnesas se-

mer T mantic context, estimates a higher probability for thevahs

T [Softmax Activation] word, market In addition, it assigns a lower probability to

E an irrelevant wordcomputer We believe that, the linguistic
[Output Layer]; Membership Pr. Class Pr. || scene built by semantic fram€ommerce scenariandCom-
? i merce selbre effective in this better estimation.

[
[Sigmoid Activation]

(s,)| Hidden Layer
5

4. PENN-TREEBANK EXPERIMENTS

In this section we present the perplexity results on theipiybl
available Penn-Treebank part of the WSJ corpus. The experi-
ments presented here are performed on the same data and with

Input Layer Recurrent Layer | | Context Layer the same preprocessing steps (with the same trainingljesti
partitions and the same vocabulary) given in [16, 17, 10].
T (Sm) T The preprocessing steps involve representing numerical

values with the special tokeéN” and limiting the vocabulary

to the most frequent 10K tokens, all other tokens are mapped

) ) to anunknowntoken. We have used the following split. Sec-
Fig. 2. The SELM structure that is based on the class-basegh s 0-20 are used for training, sections 21-22 are usetkas t
RNNLM structure. The network takes the current ward  yovelopment set, and sections 23-24 are used as the evalua-
and the semantic context for the current utterance as input. ;1 set. The number of tokens are 930K. 74K. and 82K for
In addition the previous hidden state i_s copied into the rrecu training, development and evaluation sets respectively.

rent layers,_,. The output_ Iaye_r estimates the F?f‘?bab"'ty The semantic features are extracted on the raw data that is
for the next wordl_utﬂ facto_r.|z.ed into class probabllmes_and not preprocessed. Therefore, the raw data is fed to the se-
class-membership probabilitied ., denotes the recognized mantic parser and semantic features are extracted over the

class. for the next word). Therefore thesg probabilities areames and the targets by using the semantic feature extrac-
conditioned on the current word;, the previous staté;_1  yjon step. For the Penn-Treebank we have 819 distinct frames
and the semantic context. The direct connections from n- and 11271 distinct targets in the training set
gram histories to output layers are not shown. We have trained a 5-gram Kneser-Ney LM with singleton
cut-offs (KN5), a 4-gram feed-forward NNLM that has 160
nodes in the hidden layer and uses 200 word classes that are
ssigned with respect to their frequencies (FF4), and a RN-
ME model that uses the same clustering of words, it has
150 nodes in the hidden layer and uses 4-gram features for
the maximum entropy model with a size t#° connections
(RNNME). The NNLMs are optimized over the perplexities
on the development set for their size of hidden layers arid the
. random initializations.
We demonstrate how the probability for the wondirket . .
(shown in bold), which is not a target, is estimated by some The SELMs we have built are RNNME models with se-

of the LMs that are presented in Section 4. In addition, we reMantic context. The SELMs are trained with the semantic

place the wordmarket with an irrelevant wordgomputeyin c“ontext over frame,:s (*SELM on Frames”) and over targets
the same sentence. The probability estimatesrfarketand ("SELM on Targets”). All SELMs use 200 word classes that

computerin the same context by an n-gram LM, a standarqf_Ire slame Wllth _Ehe fpr[ev_lo_us NNIEIN:?] to reduze the cfomtputa-
RNNME model, and a SELM are given in Table 1. lonal complexity of tramning, and they use 'ggram eatures
for the maximum entropy model with a size B#” connec-

bl babili . f th mhark d th tions. They have 200 nodes in the hidden layer. In addition
Table 1. Probability estimates of the wonnarketand the , y,oge models, we have trained SELMs by using the most

substituted yvo[]d:omputg_r given tge_ his(tjofry ]@h' For the 5-h frequent frames and targets that cover the 80% of the tiginin
gram LM, . is the preceding words; and for the RNNME the data. This reduces the size of distinct frames to 181 and dis-

preceg?ng worgl arr:d tt_]hgdhidden statxz.fc;]r the SELM fis the  inct targets to 1386, therefore this also reduces the ctanpu
preceding word, the hidden state and the semantic frames. ;| complexity of the training procedure. The perpliesit

W, SC

rather than investors, it left thearket vulnerable to contin-
ued selling this morning, traders said.”

When passed through the semantic parser, the parser r
ognizes the following frames:
Calendric unit, Catastrophe, Participation, People by &oc
tion, Commerce scenario, Departing, Being at risk, Activ-
ity ongoing,Commerce sell, Calendric unit,Commerce sce-
nario, Statement

Model P(market|_hg P(computer _hz of all LMs are presented in Table 2.

Kneser-Ney 5-gram 4.2 x 10 8.2 x 10~ We have achieved 50% and 64% relative reduction in per-

RNNME 6.9 x 107 1.8 x 1077 lexity with respect to the Kneser-Ney 5-gram LM by usin
oo e p ser-Ney 5-gram LM by using

SELM on Frames 1.2 x 10 : frames and targets as semantic context. In addition, we have



. The ASR baseline performs weighted finite state decod-
Table 2. Perplexity results on Penn-Treebank part of the Wal ng. We have extracted 100-best lists for each development

Street Journal corpus. SELMs achieve 50% and 64% relativgnd evaluation set. The performance of ASR baseline is given

reduction in perplexity with respect to Kneser-Ney 5—gramin Table 3.

model when frames and targets are used as semantic context

respectively. Table 3. The WER performance of the ASR baseline system
Mode| Dev PPL | Test PPL on Dev 93, Test 92, and Test 93 sets.
KNS 148.0 141.2 Dev 93 | Test92 | Test 93
FF4 165.9 156.3 ASR 1-best 15.3% | 10.2% | 14.0%
RNNME 133.6 127.9 Oracle on 100-best 8.3% 5.1% 7.3%
SELM on Frames 73.7 70.3
SELM on 80% Frameg 84.6 81.4
SELM on Targets 53.8 51.1 5.2. Re-scoring experiments
SELM on 80% Targets 63.3 60.5 Re-scoring experiments are performed on the 100-best lists

that are generated by the baseline ASR system. These 100-

. . . . ... best lists are re-scored by using the SELMs. In addition, we
achieved 5% and 31% relative reduction in perplexity W'thhave trained n-gram LMsyand I\?NLMS to better compare the

respect to the lowest reported results in [10]. Restrictiveg SELMs with. All LMs are trained over the whole WSJ 87,

good redu<_:tion in perplexity. Therefore, for the re-scgrin open vocabulary for non-verbalized punctuation. The LMs
ASR experiments on a larger corpus, we have used the fram? comparison include a Kneser-Ney 5-gram model with sin-

and _targets with 80% coverage to reduce the training Conbleton cut-offs (KN5), a 4-gram feed-forward NNLM that has
plexity. 240 nodes in the hidden layer and with a projection layer of
size 64 (FF4), and a RNNME model that has 20 nodes in
5. WALL STREET JOURNAL EXPERIMENTS the hidden layer and uses a maximum-entropy model that has
In this section we present the results on N-best re-scoring-gram features witi0° connections (RNNME). The KN5
experiments on the WSJ speech recognition task. All of thenodel is built on words without any classes. However, to
experiments presented in this section are performed bygusireduce the training time FF4 and RNNME are trained by us-
the publicly available WSJO/WSJ1 (DARPA November'92ing 200 word classes that are constructed with respect to the
and November'93 Benchmark) sets. The acoustic models afeequencies of the words. The NNLMs are tuned to the low-
trained on the WSJO/WSJ1 training utterances also known a&st WER on the development set by using different sizes of
S1-284. All the development data under WSJ1 for speakehidden layers and with different random initializationsheT
independent 20k vocabulary is used as the development sgerformances of these models are given in Table 4.
(“Dev 93" - 503 utterances). The evaluation is done on the
November 92 CSR Speaker independent 20k NVP test s@ble 4. The WER performance of the 5-gram LM, the feed-
(“Test 92" - 333 utterances) and on the November 93 CSRorward LM, and the RNNME model.

HUB 1 test set (“Test 93" - 213 utterances). Model Dev 93| Test92 | Test 93

: KN5 145% | 9.6% | 13.4%
5.1. ASR baseline o | , FF4 14.6%| 9.6% | 13.9%
The baseline ASR system is built by using the Kaldi speech RNNME | 124.2% | 9.3% | 13.1%

recognition toolkit [18]. This system generates the N-best
lists that are used for re-scoring. The vocabulary is set to We have trained SELMs that use frames and targets as
20K by using the 20K open vocabulary word list for non- semantic context separately. The SELMs are also trained on
verbalized punctuation that is available in WSJO/WSJ1 corthe same data with the same vocabulary setting. They use the
pus. The language model that the baseline system usesdame word classes that are used by the previous NNLMs. The
the baseline tri-gram backoff model for 20K open vocabusemantic features for each utterance in the training data ar
lary for non-verbalized punctuation that is also availaible extracted by feeding them to the semantic parser SEMAFOR.
WSJO/WSJ1 corpus. The training data has 841 distinct frames and 17736 distinct

The acoustic models are trained over the SI-284 data btargets. We have limited the number of frames and targets to
using the publicly available Kaldi recipe with the followgin the most frequent ones that cover the 80% of the training data
settings. MFCCs features are extracted and spliced in timehich results in 184 distinct frames and 1182 distinct terge
with a context window of[—3,+3]. Linear discriminant We have trained the SELMs by using the BPTT algorithm on
analysis (LDA) and maximum likelihood linear transform the training data. We have used the reference transcription
(MLLT) are applied. Triphone Gaussian mixture models areand reference semantic context of the Dev 93 set as the vali-
trained over these features. dation set for early stopping to avoid overfitting.



Test N-Best List tual performance, i.e. when the ASR frames and targets are
Utterance used, is affected by the noise in the semantic context. Ve als

observe that frames as semantic features are more robust to

Best this noise.

Hypothesis

1st-Best
Hypothesis

5.3. Making sense of semantic context

The results in Table 5 show the potential performance of
SELMs. When SELMs are supplied with accurate semantic
context, their performance significantly improves. Howeve

Fig. 3. The flow of re-scoring experiments. The test utterancdhe noise on the ASR frames and targets drops their perfor-
is passed through the baseline ASR. The ASR 1-best hypotfance to an unacceptable range. Therefore to improve the
esis is given to the semantic feature extraction moduleghvhi @ctual performance, thus to lower the noise on the seman-
extracts the semantic context for that utterance. The N-be§C context, we have eliminated the frames and targets that

list is re-scored by using the SELM with the semantic contexf@ve high error rate on the ASR hypothesis. This error is
for that utterance. computed on ASR frames and targets with respect to the ref-

erence frames and targets. Thus, we have eliminated these

The re-scoring experiments by using the semantic LMdrames and targets which have an error rate of 10% on the
are conducted by using the following setting. The semandevelopment set. After elimination, we have ended up with
tic context for the utterance that will be re-scored can be ex60 distinct frames and 541 distinct targets. The SELMs are
tracted either from the reference transcription, oracleolly-  trained from scratch by using this subset of frames and tar-
esis, or the ASR hypothesis. Naturally, the experiments thaJets and re-scoring experiments are repeated with these new
use the semantic context of the ASR hypothesis will reflecBELMs. The performance of the these models is given in
the real performance. The others can be used to see the upgéble 6.
bound of the performance. Therefore, we refer to the output
of the semantic parser as follows. The output of the semar_;[able 6. Improved WER performance of the SELMs by us-
tic parser (frames and targets) on the reference trangoript Ing l,OW error frames and targets. The results show thgt by
are referred to aference frames and reference targdtse eliminating erroneous frames and targets, we can get signif

output of the parser on the ASR output are referred tASR icqnt improvements on WER with ASR frgmes and targe s
frames and ASR targetsFinally, the output on the oracle _(glven in bold). The SELM on Frames achieve 12% relative

hypotheses are referred to ascle frames and oracle tar- improvement on Test 92 evaluation set and 7% relative im-

gets We present the results on reference frames/targets algovement on Test 93 evaluation set with respect to the ASR

seline.
on oracle frames/targets to present an upper bound on the p @ Model Dev 93| Test92 | Test 93

formance of the SELMs, the actual performance is given by
the ASR frames/targets. The re-scoring procedure for ASR SELM on Frames
frames/targets is depicted in Figure 3 Reference Framey 13.6% 8.9%] 13.0%
) Oracle Frames 13.5% 8.9% | 12.8%
ASR Frames 13.8% 9.0% | 13.0%
SELM on Targets
Reference Targets 13.7% 8.9% | 13.1%
Oracle Targets 13.7% 8.9% | 13.0%
ASR Targets 13.9% 9.5% | 13.9%

y

Semantic Feature Extraction

Semantic
Context

Table 5. The WER performance of the SELMs. The bold
WERSs (ASR Frames and ASR Targets) present the actual per-
formance. Results on the reference and oracle framed4arge
are given to show an upper bound.
Model Dev 93| Test92 | Test93
SELM on Frames
Reference Frames 13.4% 8.7% | 12.3%
Oracle Frames 13.2% 8.7% | 12.0%
ASR Frames 14.5% 9.5% | 13.9%
SELM on Targets
Reference Targets 12.9% 8.4% | 11.7%
Oracle Targets 12.9% 8.4% | 11.6%
ASR Targets 15.0% | 10.0% | 14.4%

The results on Table 6 show that eliminating the erroneous
frames and targets yields significant improvement with ASR
frames and targets. Since this elimination is done on the de-
velopment set, the development set benefits more, especiall
on ASR targets. The SELM with ASR frames achieves a rela-
tive improvement of 12% and 7% on Test92 and Test 93 eval-
uation sets with respect to the ASR baseline.

As can be seen in Table 5 when accurate semantic infoP.4. Model combination
mation (reference frames/targets and oracle framesttyrige It is possible to obtain more improvement by linearly inter-
used as the semantic context, the SELMs achieve a signifpolating NNLMs with n-gram models. We have optimized
cant improvement in WER. Target words, since they are moréhe weights of linear interpolation over WER on the Dev 93
constraining on semantics, give better results. Howewer, aset. Table 7 presents the combination of two models. The



first one is the combination of the 5-gram model (KN5) with [7] H. Schwenk, “Continuous space language models,”
the RNNME model (Table 4, RNNME). The second one is Computer Speech Languageol. 21, no. 3, pp. 492—
the combination of the 5-gram model (KN5) with the SELM 518, 2007.

on ASR Frames (Table 6, SELM on Frames). We observe
that the combination with the SELM gives a better perfor-
mance than the combination with the RNNME model. The
combination with the SELM achieves 14% and 11% relative
improvement with respect to the ASR baseline on Test 92 and
Test 93 respectively. [9]

8] T. Mikolov, M. Karafiat, L. Burget, J. Cernock, and
S. Khudanpur, “Recurrent neural network based lan-
guage model,” irProceedings of Interspeech010, pp.
1045-1048, ISCA.

F. Zamora-Martinez, S. Espana-Boquera, J. Castro-
Bleda, M., and R. De-Mori, “Cache neural network
language models based on long-distance dependencies
for a spoken dialog system,” ifroceedings of ICASSP

Table 7. Linear interpolation of LMs. The combination with
the SELM gives a better performance than the combination

with the RNNME.

Model Dev 93| Test92 | Test 93 2012, IEEE.

KN5 + RNNME 13.8% | 9.2% | 13.0% [10] T. Mikolov and G. Zweig, “Context dependent recur-
KNS5 + SELM on ASR Frames 13.4%| 8.8% | 12.5% rent neural network language model.,” Rmoceedings

of SLT 2012, pp. 234-239, |IEEE.

6. CONCLUSION ) .
o ) [11] Charles J. Fillmore, Christopher R. Johnson, and
Semantic information helps to capture the long-span depen- ~ wiriam R. L. Petruck “Background to Framenetji-

dencies that linguistic constructions have. This papesgnts ternational Journal of Lexicographyol. 16, no. 3, pp.
a novel SELM that is based on the theory of frame semantics. 535 o550 Sept. 2003.

We have constructed SELMs by using context dependent RN-
NME models. The semantic context is extracted from evoke{il2] D. Das, D. Chen, A. F. T. Martins, N. Schneider, and
frames and targets in an utterance. We have achieved signifi- N. Smith, “Frame-semantic parsing,Computational
cant reductions in perplexity on Penn-Treebank. In addtio Linguistics vol. 40, no. 1, pp. 9-56, 2014.

by performing re-scoring experiments on WSJ speech recog-

nition corpus, we have obtained significant improvements iim]
WER by using SELMs that use frames as semantic context.
We observe that SELMs on frames performs better than stan-
dard RNNME models even in model combination with n-
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