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Abstract

Discourse relation parsing is an impor-
tant task with the goal of understanding
text beyond the sentence boundaries. With
the availability of annotated corpora (Penn
Discourse Treebank) statistical discourse
parsers were developed. In the litera-
ture it was shown that the discourse pars-
ing subtasks of discourse connective de-
tection and relation sense classification do
not generalize well across domains. The
biomedical domain is of particular interest
due to the availability of Biomedical Dis-
course Relation Bank (BioDRB). In this
paper we present cross-domain evaluation
of PDTB trained discourse relation parser
and evaluate feature-level domain adapta-
tion techniques on the argument span ex-
traction subtask. We demonstrate that the
subtask generalizes well across domains.

1 Introduction

Discourse analysis is one of the most challeng-
ing tasks in Natural Language Processing that has
applications in many language technology areas
such as opinion mining, summarization, informa-
tion extraction, etc. (see (Webber et al., 2011)
and (Taboada and Mann, 2006) for detailed re-
view). The release of the large discourse rela-
tion annotated corpora, such as Penn Discourse
Treebank (PDTB) (Prasad et al., 2008), marked
the development of statistical discourse parsers
(Lin et al., 2012; Ghosh et al., 2011; Xu et al.,
2012; Stepanov and Riccardi, 2013). Recently,
PDTB-style discourse annotation was applied to
biomedical domain and Biomedical Discourse Re-
lation Bank (BioDRB) (Prasad et al., 2011) was
released. This milestone marks the beginning of
the research on cross-domain evaluation and do-
main adaptation of PDTB-style discourse parsers.

In this paper we address the question of how
well PDTB-trained discourse parser (news-wire
domain) can extract argument spans of explicit dis-
course relations in BioDRB (biomedical domain).

The use cases of discourse parsing in biomed-
ical domain are discussed in detail in (Prasad et
al., 2011). Here, on the other hand, we provide
very general connection between the two. The
goal of Biomedical Text Mining (BioNLP) is to
retrieve and organize biomedical knowledge from
scientific publications; and detecting discourse re-
lations such as contrast and causality is an impor-
tant step towards this goal (Prasad et al., 2011). To
illustrate this point consider a quote from (Brunner
and Wirth, 2006), given below.

The addition of an anti-Oct2 antibody
did not interfere with complex formation
(Figure 3, lane 6), since HeLa cells do
not express Oct2. (Cause:Reason)

In the example, the discourse connective since sig-
nals a causal relation between the clauses it con-
nects. That is, the reason why ‘the addition of an
anti-Oct2 antibody did not interfere with complex
formation’ is ‘HeLa cells’ not expressing Oct2’.

PDTB adopts non-hierarchical binary view on
discourse relations: Argument 1 (Arg1) (in italics
in the example) and Argument 2 (Arg2), which is
syntactically attached to a discourse connective (in
bold). Thus, a discourse relation is a triplet of a
connective and its two arguments. In the literature
(Lin et al., 2012; Stepanov and Riccardi, 2013)
PDTB-style discourse parsing is partitioned into
discourse relation detection, argument position
classification, argument span extraction, and rela-
tion sense classification. For the explicit discourse
relations (i.e. signaled by a connective), discourse
relation detection is cast as classification of con-
nectives as discourse and non-discourse. Argu-
ment position classification, on the other hand, in-
volves detection of the location of Arg1 with re-
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Figure 1: Discourse Parser Architecture. (CRF
Argument Span Extraction models are in bold.)

spect to Arg2, that is to detect whether a relation is
inter- or intra- sentential. Argument span extrac-
tion is the extraction (labeling) of text segments
that belong to each of the arguments. Finally, re-
lation sense classification is the annotation of re-
lations with the senses from the sense hierarchy
(PDTB or BioDRB).

To the best of our knowledge, the only subtasks
that were addressed cross-domain are the detec-
tion of explicit discourse connectives (Ramesh and
Yu, 2010; Ramesh et al., 2012; Faiz and Mercer,
2013) and relation sense classification (Prasad et
al., 2011). While the discourse parser of Faiz and
Mercer (2013)1 provides models for both domains
and does identification of argument head words in
the style of Wellner and Pustejovsky (2007); there
is no decision made on arguments spans. More-
over, there is no cross-domain evaluation available
for each of the models. In this paper we address
the task of cross-domain argument span extraction
of explicit discourse relations. Additionally, we
provide evaluation for cross-domain argument po-
sition classification as far as the data allows, since
BioDRB lacks manual sentence segmentation.

The paper is structured as follows. In Section 2
we present the comparative analysis of PDTB and
BioDRB corpora and the relevant works on cross-
domain discourse parsing. In Section 3 we de-
scribe the PDTB discourse parser used for cross-
domain experiments. In Section 4 we present the
evaluation methodology and the experimental re-
sults. Section 5 provides concluding remarks.

2 PDTB vs. BioDRB Corpora Analysis
and Related Cross-Domain Works

The two corpora used in our experiments are Penn
Discourse Treebank (PDTB) (Prasad et al., 2008)

1Made available on https://code.google.com/
p/discourse-parser/

and Biomedical Discourse Relation Bank (Bio-
DRB) (Prasad et al., 2011). Both corpora follow
the same discourse relation annotation style over
different domain corpora: PDTB is annotated on
top of Wall Street Journal (WSJ) corpus (financial
news-wire domain); and it is aligned with Penn
Treebank (PTB) syntactic tree annotation; Bio-
DRB, on the other hand, is a corpus annotated over
24 open access full-text articles from the GENIA
corpus (Kim et al., 2003) (biomedical domain),
and, unlike PDTB, there is no reference tokeniza-
tion or syntactic parse trees.

The detailed comparison of the corpora is out
of the scope of this paper, and it is available in
(Prasad et al., 2011). Similarly, the review of
PDTB-style discourse parsing literature is not in
its scope. Here, on the other hand, we focus on the
corpus differences relevant for discourse parsing
tasks and cross-domain application of discourse
parsing subtasks.

Discourse relations in both corpora are binary:
Arg1 and Arg2, where Arg2 is an argument syn-
tactically attached to a discourse connective. With
respect to Arg2, Arg1 can appear in the same sen-
tence (SS case), one or several of the preceding
(PS case) or following (FS case) sentences. A
discourse connective is a member of a well de-
fined list of connectives and a relation expressed
via such connective is an Explicit relation. There
are other types of discourse and non-discourse re-
lations annotated in the corpora; however, they are
out of the scope of this paper. Discourse relations
are annotated using a hierarchy of senses: even
though the organization of senses and the number
of levels are different between corpora, the most
general top level senses are mapped to the PDTB
top level senses: Comparison, Contingency, Ex-
pansion, and Temporal (Prasad et al., 2011).

The difference between the two corpora with re-
spect to discourse connectives is that in case of
PDTB the annotated connectives belong to one of
the three syntactic classes: subordinating conjunc-
tions (e.g. because), coordinating conjunctions
(e.g. but), and discourse adverbials (e.g. how-
ever), while BioDRB is also annotated for a forth
syntactic class – subordinators (e.g. by).

There are 100 unique connective types in PDTB
(after connectives like 1 year after are stemmed
to after) in 18,459 explicit discourse relations.
Whereas in BioDRB there are 123 unique con-
nective types in 2,636 relations. According to
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the discourse connective analysis in (Ramesh et
al., 2012), the subordinators comprise 33% of all
connective types in BioDRB. Additionally, 11%
of connective types in common syntactic classes
that occur in BioDRB do not occur in PDTB; e.g.
In summary, as a consequence. Thus, only 56%
of connective types of BioDRB are common to
both corpora. While in-domain discourse connec-
tive detection has good performance (Ramesh and
Yu, 2010), this difference makes the cross-domain
identification of discourse connectives a hard task,
which is exemplified by experiments in (Ramesh
and Yu, 2010) (F1 = 0.55).

With respect to relation sense classification, the
connective surface provides already high baselines
(Prasad et al., 2011). However, cross-domain
sense classification experiments indicate that there
are significant differences in the semantic usage of
connectives between two domains, since the per-
formance of the classifier trained on PDTB does
not generalize well to BioDRB (F1 = 0.57).

To sum up, the corpora differences with respect
to discourse connective usage affect the cross-
domain generalization of connective detection and
sense classification tasks negatively. The exper-
iments in this paper are intended to evaluate the
generalization of argument span extraction, as-
suming that the connective is already identified.
In the following section, we present the PDTB-
trained discourse parser optimized for in-domain
performance.

3 PDTB-Style Discourse Parser

The discourse parser (see Figure 1) is a combi-
nation of argument position classification model
for classifying discourse connectives as inter- or
intra-sentential, and specific Conditional Random
Fields argument extraction models for each of the
arguments in these configurations. In the follow-
ing subsections we provide descriptions for each
of the components.

3.1 Argument Position Classification

Discourse connectives have a very strong prefer-
ence on the location of the Arg1 with respect to
their syntactic category (Subordinating Conjunc-
tion, Coordinating Conjunction, and Discourse
Adverbial) and position in the sentence (sentence
initial or sentence medial); thus, classification of
discourse connectives into inter-sentential or intra-
sentential is an easy task yielding high supervised

machine learning performance (Stepanov and Ric-
cardi, 2013; Lin et al., 2012). With respect to the
decision made in this step a specific argument span
extraction model is applied.

For Argument Position Classification the un-
igram BoosTexter (Schapire and Singer, 2000)
model with 100 iterations is trained on PDTB sec-
tions 02-22 and tested on sections 23-24. Sim-
ilar to the previously published results, it has a
high performace: F1 = 98.12. The features
are connective surface string, POS-tags, and IOB-
chains. The results obtained with automatic sen-
tence splitting, tokenization, and syntactic parsing
using Stanford Parser (Klein and Manning, 2003)
are also high F1 = 97.81.

Since, unlike PTB for PDTB, for BioDRB there
is no manual sentence splitting, tokenization, and
syntactic tree annotation; the precise cross-domain
evaluation of Argument Span Extraction step is not
possible. However, in Section 4 we estimate the
performance using automatic sentence splitting.

3.2 Argument Span Extraction

Argument span extraction is cast as token-level se-
quence labeling using Conditional Random Fields
(CRF) (Lafferty et al., 2001). Previously, it was
observed that in PDTB for inter-sentential dis-
course relations Arg1 precedes Arg2 in most of the
cases. Thus, the CRF models are trained for the
configurations where both of the arguments are in
the same sentence (SS), and for Arg1 in one of the
previous sentences (PS); the following sentence
Arg1 case (FS) is ignored due to too few training
instances being available (in PDTB 8 / 18,459).
Consequently, there are 4 CRF models SS Arg1
and Arg2, and PS Arg1 and Arg2.

Same sentence case models are applied in a cas-
cade, such that output of Arg2 model is used as a
feature for Arg1 span extraction. For the case of
Arg1 in the previous sentences; based on the ob-
servation that in PDTB Arg2 span is fully located
in the sentence containing the connective in 98.5%
of instances; and Arg1 span is fully located in the
sentence immediately preceding Arg2 in 71.7% of
instances; the sentences in these positions are se-
lected and CRF models are trained to label the
spans.

The features used for training the models are
presented in Table 1. The feature sets are opti-
mized for each of the arguments in (Ghosh et al.,
2011) (see the Table columns Arg1 and Arg2). Be-
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sides the features commonly used in NLP tasks
such that token, lemma, inflectional affixes, and
part-of-speech tag, the rest of the features are:

• IOB-Chain (IOB) is the path string of the syn-
tactic tree nodes from the root node to the to-
ken, prefixed with the information whether a
token is at the beginning (B-) or inside (I-)
the constituent. The chunklink tool (Buch-
holz, 2000) is used to extract this feature from
syntactic trees.

• PDTB Level 1 Connective sense (CONN) is
the most general sense of a connective in
PDTB sense hierarchy. It’s general purpose is
to label the discourse connective tokens, i.e.
the value of the feature is ‘NULL’ for all to-
kens except the discourse connective.

• Boolean Main Verb (BMV) is a boolean fea-
ture that indicates whether a token is a main
verb of a sentence or not (Yamada and Mat-
sumoto, 2003).

• Arg2 Label (ARG2) is an output of Arg2 span
extraction model, that is used as a feature for
Arg1 span extraction. Arg2 span is easier to
identify (Ghosh et al., 2011; Stepanov and
Riccardi, 2013) since it is syntactically at-
tached to the discourse connective. Thus, this
feature serves to constrain the Arg1 search
space for intra-sentential argument span ex-
traction. The value of the feature is either
ARG2 suffixed for whether a token is Inside
(I), Begin (B), or End (E) of the span, or ‘O’
if it does not belong to the Arg2 span.

These features are expanded during training
with n-grams (feature of CRF++2): tokens with
2-grams in the window of ±1 tokens, and the rest
of the features with 2 & 3-grams in the window of
±2 tokens.

The in-domain performance of argument span
extraction models is provided in the following
section, after the description of the evaluation
methodology.

4 Experiments and Results

In this Section we first describe the evaluation
methodology and then the experiments on cross-
domain evaluation of argument position classifi-
cation and argument span extraction models.

2https://code.google.com/p/crfpp/

Feature ABBR Arg2 Arg1
Token TOK Y Y
POS-Tag POS
Lemma LEM Y Y
Inflection INFL Y Y
IOB-Chain IOB Y Y
Connective Sense CONN Y Y
Boolean Main Verb BMV Y
Arg2 Label ARG2 Y

Table 1: Feature sets for Arg2 and Arg1 argument
span extraction.

The experimental settings for PDTB are the fol-
lowing: Sections 02-22 are used for training and
Sections 23-24 for testing. For BioDRB, on the
other hand, 12 fold cross-validation is used (2 doc-
uments in each fold, since in BioDRB there are 24
documents).

4.1 Evaluation Methodology

The performance of Argument Span Extraction is
evaluated in terms of precision (p), recall (r), and
F-measure (F1) using the equations 1 – 3. An
argument span is considered to be correct, if it
exactly matches the reference string. Following
(Ghosh et al., 2011) and (Lin et al., 2012), argu-
ment initial and final punctuation marks are re-
moved .

p =
Exact Match

Exact Match + No Match
(1)

r =
Exact Match

References in Gold
(2)

F1 =
2 ∗ p ∗ r

p + r
(3)

In the equations, Exact Match is the count of cor-
rectly tagged argument spans; No Match is the
count of argument spans that do not match the ref-
erence string exactly, i.e. even a single token dif-
ference is counted as an error; and References in
Gold is the total number of arguments in the refer-
ence.

Since argument span extraction is applied after
argument position classification, the classification
error is propagated. Thus, for the evaluation of
argument span extraction, misclassified instances
are reflected in the counts of Exact Matches and
No Matches. For example, misclassified same sen-
tence relation results in that both its arguments are
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Arg2 Arg1
P R F1 P R F1

Gold
SS 90.36 87.49 88.90 70.27 66.67 68.42
PS 79.01 77.10 78.04 46.23 36.61 40.86
ALL 85.93 83.45 84.67 61.94 54.98 58.25

Auto
SS 86.83 85.14 85.98 64.26 63.01 63.63
PS 75.00 73.67 74.33 37.66 37.00 37.33
ALL 82.24 80.69 81.46 53.93 52.92 53.42

Table 2: In-domain performance of the PDTB-
trained argument span extraction models on the
test set with ‘Gold’ and ’Automatic’ sentence
splitting, tokenization, and syntactic features. The
results are reported together with the error prop-
agation from argument position classification for
Same Sentence (SS), Previous Sentence (PS) mod-
els and joined results (ALL) as precision (P), recall
(R) and F-measure (F1).

considered as not recalled for the SS, and for the
PS they are considered as No Match.

However, we do not propagate error in cross-
domain evaluation on BioDRB, since there is no
reference information. Additionally, while Arg1
span extraction models are trained on Gold Arg2
features, for testing they are always automatic.

4.2 Cross-Domain Argument Position
Classification

As it was mentioned above, there is no manual
sentence splitting for BioDRB; thus, there is no
references for whether a discourse relation has its
Arg1 in the same or different sentences. In order
to evaluate cross-domain argument position clas-
sification we evaluate classifier decisions against
automatic sentence splitting using Stanford Parser
(Klein and Manning, 2003) on whole of BioDRB.

The BoosTexter model described in Section 3.1
has a high in-domain performance of 97.81. On
BioDRB its performance is 95.26, which is still
high. Thus, we can conclude that argument posi-
tion classification generalizes well cross-domain,
and that it is little affected by the presence of ‘sub-
ordinators’ that were not annotated in PDTB.

4.3 In-Domain Argument Span Extraction:
PDTB

The in-domain performance of the argument span
extraction models trained on PDTB sections 02-22

and tested on sections 23-24 is given on Table 2.
The results are for 2 settings: ‘Gold’ and ‘Auto’.
In the ‘Gold’ settings the sentence splitting, tok-
enization and syntactic features are extracted from
PTB, and in the ‘Auto’ they are extracted from au-
tomatic parse trees obtained using Stanford Parser
(Klein and Manning, 2003).

The general trend in the literature, is that the ar-
gument span extraction for Arg1 has lower perfor-
mance than for Arg2, which is expected since Arg2
position is signaled by a discourse connective. Ad-
ditionally, Previous Sentence Arg1 model perfor-
mance is much lower than that of the other models
due to the fact that it only considers immediately
previous sentence; which, as was mentioned ear-
lier, covers only 71.7% of the inter-sentential re-
lations. In the next subsections, these models are
evaluated on biomedical domain.

4.4 In-Domain Argument Span Extraction:
BioDRB

In order to evaluate PDTB-BioDRB cross-domain
performance we first evaluate the in-domain Bio-
DRB argument span extraction. Since there is no
gold sentence splitting, tokenization and syntactic
parse trees, the models are trained using the fea-
tures extracted from automatic parse trees. We use
exactly the same feature sets as for PDTB models,
which are optimized for PDTB. An important as-
pect is that in BioDRB the connective senses are
different: there are 16 top level senses that are
mapped to 4 top level PDTB senses. For the in-
domain BioDRB models, the 16 senses were kept
as is.

Since we do not have gold argument position
information, we do not train in-domain argument
classification model. Thus, the reported results are
without error propagation. Later, this will allow us
to assess cross-domain argument span extraction
performance better.

The results reported in Table 3 are average
precision, recall and f-measure of 12-fold cross-
validation. With respect to automatic sentence
splitting, there are 717 inter-sentential and 1,919
intra-sentential relations (27% to 73%). Thus,
BioDRB is less affected by PS Arg1 performance
than PDTB models, where the ratio is 619 to
976 (39% to 61%). Additionally, BioDRB PS
Arg1 performance is generally higher than that
of PDTB. Overall, in-domain BioDRB argument
extraction model performance is in-line with the
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Arg2 Arg1
P R F1 P R F1

SS 80.94 79.88 80.41 66.51 61.82 64.07
PS 82.99 82.99 82.99 57.50 55.62 56.53
ALL 81.45 80.67 81.06 63.87 60.00 61.87

Table 3: In-domain performance of the BioDRB-
trained argument span extraction models. Both
training and testing are on automatic sentence
splitting, tokenization, and syntactic features. The
results are reported for Same Sentence (SS) and
Previous Sentence (PS) models, and the joined re-
sults for each of the arguments (ALL) as average
precision (P), recall (R), and F-measure (F1) of
12-fold cross-validation.

PDTB models, with the exception that previous
sentence Arg2 has higher performance than the
same sentence one.

4.5 Cross-Domain Argument Span
Extraction: PDTB - BioDRB

Similar to in-domain BioDRB argument span ex-
traction, we perform 12 fold cross-validation for
PDTB-BioDRB cross-domain argument span ex-
traction. The cross-domain performance of the
models described in Section 4.3 is given in the
Table 4 under the ‘Gold’. To make the cross-
domain evaluation settings closer to the BioDRB
in-domain evaluation, we additionally train PDTB
models on the automatic features, i.e. features ex-
tracted from PDTB with automatic sentence split-
ting, tokenization and syntactic parsing. Similar
to the in-domain BioDRB evaluation, results are
reported without error propagation from argument
position classification step.

The first observation from cross-domain eval-
uation is that argument span extraction general-
izes to biomedical domain much better that the
discourse parsing subtasks of discourse connective
detection and relation sense classification. Unlike
those subtasks, the difference between in-domain
BioDRB argument span extraction models and the
models trained on PDTB is much less: e.g. for
discourse connective detection the in-domain and
cross-domain difference for BioDRB is 14 points
(f-measures 69 and 55 in (Ramesh and Yu, 2010)),
and for argument span extraction 2 and 4 points
for Arg2 and Arg1 respectively (see Tables 3 & 4).

The difference between the models trained on
automatic and gold parse trees is also not high, and
gold feature trained models perform better with

Arg2 Arg1
P R F1 P R F1

Gold
SS 80.37 76.58 78.42 60.82 56.40 58.52
PS 80.73 80.50 80.62 57.74 52.95 55.19
ALL 80.53 77.71 79.09 59.76 55.29 57.43

Auto
SS 77.60 75.05 76.30 60.76 55.21 57.83
PS 81.39 81.23 81.31 57.71 51.72 54.47
ALL 78.72 76.80 77.74 59.60 54.12 56.71

Table 4: Cross-domain performance of the PDTB-
trained argument span extraction models on Bio-
DRB. For the ‘Gold’ setting the models from in-
domain PDTB section are used. For ‘Auto’, the
models are trained on automatic sentence splitting,
tokenization, and syntactic features. The results
are reported for Same Sentence (SS) and Previ-
ous Sentence (PS) models, and the joined results
for each of the arguments (ALL) as average preci-
sion (P), recall (R), and F-measure (F1) of 12-fold
cross-validation.

the exception of PS Arg2. Since training on auto-
matic parse trees does not improve cross-domain
performance, the rest of the experiments is using
gold features for training.

4.6 Feature-Level Domain Adaptation

The two major differences between PDTB and
BioDRB are vocabulary and connective senses.
The out-of-vocabulary rate of PDTB on the whole
BioDRB is 22.7% and of BioDRB on PDTB is
33.1%, which are very high. Thus, PDTB lexi-
cal features might not be very effective, and the
models generalize well due to syntactic features.
To test this hypothesis we train additional PDTB
models on only syntactic features: POS-tags and
IOB-chain and ‘connective labels’ – ‘CONN’ suf-
fixed for the Beginning (B), Inside (I) or End (E)
of the connective span, simulating discourse con-
nective detection output. Moreover, we reduce the
feature set to unigrams only (recall that features
were enriched by 2 and 3 grams), such that the
models become very general.

Even though BioDRB connective senses can be
mapped to PDTB, in (Prasad et al., 2011) it was
observed that relation sense classification does not
generalize well. To reduce the dependency of ar-
gument span extraction models on relation sense
classification, the connective sense feature in the
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Arg2 Arg1
P R F1 P R F1

Baseline
SS 80.37 76.58 78.42 60.82 56.40 58.52
PS 80.73 80.50 80.62 57.74 52.95 55.19
ALL 80.53 77.71 79.09 59.76 55.29 57.43

Syntactic
SS 82.00 75.03 78.33 61.07 51.80 56.01
PS 75.56 74.47 75.01 56.64 46.66 51.11
ALL 80.31 74.98 77.54 59.69 50.42 54.63

No Relation Sense
SS 81.35 74.00 77.47 62.46 56.11 59.10
PS 80.35 80.13 80.24 57.58 52.25 54.74
ALL 81.16 75.67 78.30 60.86 54.87 57.69

Table 5: Cross-domain performance of the PDTB-
trained argument span extraction models on Bio-
DRB. For the ‘Syntactic’ setting the models are
trained on only syntactic features (POS-tag + IOB-
chain) and ‘connective labels’. For ‘No Relation
Sense’, the models are trained by replacing con-
nective sense with ‘connective labels’. The ‘Base-
line’ is repeated from Table 4. The results are re-
ported for Same Sentence (SS) and Previous Sen-
tence (PS) models, and the joined results for each
of the arguments (ALL) as average precision (P),
recall (R), and F-measure (F1) of 12-fold cross-
validation.

‘Baseline’ models (i.e. the models from Section
4.3) is also replaced by ‘connective labels’. We
train these models using gold features only, and,
similar to previous experiments, do 12-fold cross-
validation.

The performance of the adapted models is given
in Table 5. The ‘Syntactic’ section gives the re-
sults of the models trained on syntactic features
and the ‘No Relation Sense’ section gives the re-
sults for the models with ‘connective labels’ in-
stead of connective senses, and the ‘Baseline’
repeats the performance of the PDTB-optimized
models.

The PDTB-optimized baseline, outperforms the
adapted models on Arg2; however, ‘No Relation
Sense’ Arg1 yields the best performance, and,
though insignificantly, outperforms the baseline.
Thus, the effect of replacing connective senses
with ‘connective labels’ is negative for all cases
except SS Arg1. Overall, the difference in perfor-
mance between the ‘Baseline’ and ‘No Relation
Sense’ models is an acceptable price to pay for the

Arg2 Arg1
P R F1 P R F1

SS 81.72 76.14 78.82 61.53 56.36 58.82
PS 80.31 79.84 80.07 58.55 52.82 55.44
ALL 81.27 77.10 79.12 60.56 55.30 57.80

Table 6: Cross-domain performance of the PDTB-
trained argument span extraction model on uni-
gram and bigrams of token, POS-tag, IOB-chain
and ‘connective label’. The results are reported for
Same Sentence (SS) and Previous Sentence (PS)
models, and the joined results for each of the argu-
ments (ALL) as average precision (P), recall (R),
and F-measure (F1) of 12-fold cross-validation.

independence from relation sense classification.
The most general models – unigrams of Part-of-

Speech tags and IOB-chains together with ‘con-
nective labels’ in the window of ±2 tokens –
all have the performance lower than the baseline,
which is expected given its feature set. However,
for the easiest case of intra-sentential Arg2 it out-
performs the model trained by replacing the con-
nective sense in the baseline (i.e. ‘No Relation
Sense’). Degraded performance of Arg1 models
indicates that lexical features are helpful.

Introducing the tokens back into the ‘Syntactic’
model, and increasing the features to include also
2-grams, boosts the performance of the models to
outperform the ‘No Relation Sense’ models in all
but Previous Sentence Arg2 category. However,
the models now yield performance comparable to
the PDTB optimized baseline (insignificantly bet-
ter), while being unaffected by poor cross-domain
generalization of relation sense classification (see
Table 6).

The cross-domain argument extraction exper-
iments indicate that models trained on PDTB-
optimized feature set already have good general-
ization. However, they are dependent on relation
sense classification task, which does not gener-
alize well. By replacing connective senses with
‘connective labels’ we obtain models independent
of this task while maintaining comparable perfor-
mance. The in-domain trained BioDRB models,
however, perform better, as expected.

5 Conclusion

In this paper we presented cross-domain discourse
parser evaluation on subtasks of argument posi-
tion classification and argument span extraction.
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The observed cross-domain performances are in-
dicative of good model generalization. However,
since these models are applied later in the pipeline,
they are affected by the cross-domain performance
of the other tasks. Specifically, discourse connec-
tive detection, which was shown not to generalize
well in the literature. Additionally, we have pre-
sented feature-level domain adaptation techniques
to reduce the dependence of the cross-domain ar-
gument span extraction on other discourse parsing
subtasks.

The syntactic parser (Stanford) that provides
sentence splitting and tokenization is trained on
Penn Treebank, i.e. it is in-domain for PDTB
and out-of-domain for BioDRB; and it is known
that domain-optimized tokenization improves per-
formance on various NLP tasks. Thus, the fu-
ture direction of this work is to evaluate argument
span extraction using tools optimized for biomed-
ical domain.
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