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Executive summary
In this deliverable we present the progress on the discourse analysis methods developed within
the project in Period 3. We continued the lines of work pursued during Period 2 of the project
on discourse parsing of spoken conversations, on inter- and intra-document coreference in
social media, and on argument structure of conversations started in Period 2.

The document is organised as follows: in Section 2, progress on discourse parsing for conver-
sations is presented. Next, progress in event, temporal expression, and sentiment detection is
described (Section 3), followed by progress on intra- and inter-document coreference resolu-
tion for conversations in social media (Sections 4 and 5, respectively), and finally the work on
argument structure is discussed in Section 6. Finally, conclusions and future plans are drawn.
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1 Introduction
The objective of WP4 is to develop tools supporting automated discourse analysis of conver-
sations both as happening online (e.g., online forums) as well as in spoken dialogue (e.g., cus-
tomer call centres). In particular, we aim to develop tools for discourse parsing, event/temporal
structure, argumentation structure, and intra-/inter-document coreference in the two domains
(social media conversations and call centre conversations) and three languages (English,
French, and Italian) of the project. A key goal of the research is to investigate the perform-
ance of techniques developed for the most extensively studied forms of language use (e.g.,
news) in these new domains, and develop methods for adapting such techniques.

The objectives for Period 3 were to develop the third and final release of these tools continu-
ing with the emphasis on methods for domain adaptation and on the creation of appropriate
resources for enabling this work.

In Deliverable D4.3 we present progress and completion of Work Package 4 during Period 3.
It provides details on the tools used for the tasks of the work package, the experiments carried
out on developing and adapting these tools to the domains of interest to the project, and plans
for future work along the various lines of work beyond the end of the project.

1.1 Follow-up to Period 2 Activities
During Period 3 of the project, on Discourse Parsing we have implemented automatic seg-
mentation of dialog acts with respect to dimensions defined by the ISO 24617-2 standard.
Additionally, we have improved end-to-end PDTB-style discourse parsing system. Full details
on this can be found in Section 2).

The event and sentiment detection tools were expanded to include temporal expression de-
tection and to use a newer and better sentiment detection component, as described in Section
3. (The new component is not freely licenced for non-academic use, so the old one is still
available in the combined tool as an option.)

During Period 3, work on adapting the Coreference Resolution Toolkit, BART, continued and
there were two main developments: one, a new corpus created by USFD was prepared with
thread structure and annotated with coreferences at UESSEX, and another, a new set of ma-
chine learning features were devised to model thread structure and incorporated into a new
thread-aware version of BART. We evaluate intrinsically, as well as, extrinsically the effects of
Coreference on Clustering. Additionally, work on integrating BART’s output with the repository
(cf. D5.1) was also carried out. Full details on this line of work can be found in Section 4.

During Period 3, taking advantage of the newly created USFD corpus, we repeated the exper-
iments ran in Period 2 using the JRC-Names resource [49] on the new dataset and we report
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the results. This line of work is described in Section 5.

In the follow-up of Period 2, on Task 4.5 we improved the performance of the agreement/disagreement
structure labelling algorithm, and also improved its integration into the template-based sum-
mary (reported in D5.3). In addition to that, work took place on preparing a data set for a
second edition of the shared task ONFORUMS planned for 2017. This work is presented in
Section 6.
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2 Task 4.1: Discourse parsing for con-
versations

In the deliverable D4.2 we have adopted the latest instantiation of the ‘information state up-
date’ model given by the ISO 24617-2 international standard on dialogue act annotation, and
defined the Task 4.1 activities with respect to this model. According to the standard, a conver-
sation consists of several functional segments – minimal spans of behavior (verbal or not) that
have a communicative function. Communicative functions take place across multiple semantic
dimensions (segments are dimension specific and can overlap). Thus, in a model, a dialogue
act consists of a communicative function – semantic dimension pair, such that some commu-
nicative functions are dimension specific and others are general. A dialogue act has several
participants: at least one sender and one or more addressees. A communicative function can
be described by function qualifiers for aspects such as sentiment, certainty, and conditional-
ity. Dialogue acts can be connected to each other by functional and feedback dependency
relations and rhetorical/discourse relations. Discourse relations additionally connect semantic
content to other dialogue acts or semantic content units of a conversation.

In Period 2 of the project we addressed task of dialog act classification on Italian LUNA corpus
and identified dimensions and communicative functions of dialogue segments. As in the ISO
definition a dialog turn can consist of several dialog acts, in Period 3 we have addressed the
task of automatic segmentation of utterances into dialog acts. The activity is described in
Section 2.1.

In Section 2.2 we present the improvements on discourse parser developed within Period
2 of SENSEI. The parser was submitted for participation in CoNLL 2016 Shared Task on
Shallow Discourse Parsing and in the end-to-end evaluation ranked 3rd (out of 14 participating
systems).

2.1 Dialogue Act Segmentation
For the complete automation of the detection and classification of dialog acts with respect to
DiaML specification, a final set of experiments involved designing an automated segmenter
which takes the dialog turns as an input. The automated segmenter extracts token/word with
a context of ±2 as feature and uses a discriminative approach, namely Conditional Random
Fields (CRFs), to simultaneously segment an utterance into its DA boundaries, in IOB format.
The performance of the system is shown in Table 1.

The segmented DA boundaries are then passed through the DA classifier, described in Deliv-
erable D4.2 and label such segments according to a DA tag. The results of the pipeline with
error propagation – automatic segmentation and classification – are presented in Table 2.
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As for evaluation we reported both exact and partial match performances. The partial match
computes the intersection of the exact match and the overlap between reference and hypo-
theses [24]. It is useful for cases when an exact alignment is not necessary.

Since the Dialog Acts we are interested in are of general dimension, which achieves F-
measure of 0.61 for exact matches and 0.81 for partial matches, the performances are ac-
ceptable for downstream applications.

Table 1: Precision (P), recall (R) and F1 of dialogue act segmentation

Segmenter P R F1
Overall 0.73 0.59 0.65

Table 2: Precision (P), recall (R) and F1 of dialogue act segmentation followed by dialog act classifica-
tion

Segmenter+DA Classification P R F1
Exact - Overall 0.46 0.58 0.51

General 0.59 0.67 0.63
Social 0.33 0.44 0.38

Time+Feedback 0.29 0.43 0.34
Other 0.12 0.18 0.15

Partial -Overall 0.62 0.72 0.67
General 0.79 0.83 0.81
Social 0.52 0.69 0.59

Time+Feedback 0.36 0.55 0.43
Other 0.17 0.21 0.19

2.2 PDTB-Style Discourse Parsing
Penn Discourse Treebank style discourse parsing is a composite task of detecting explicit and
non-explicit discourse relations, their connective and argument spans, and assigning a sense
to these relations. In this section we describe the end-to-end discourse parser for English. In
Period 3, the main focus of the parser was on argument spans and the reduction of global error
through model selection.

2.2.1 System Architecture

The discourse parser is the modified version of the parser developed by [52] and described
in the deliverable D4.2. The system is an extension of the explicit relation parser described
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Figure 1: Discourse parsing architecture: the sequence labeling modules are in bold and the classific-
ation modules are in italics.

in [50; 51]. The overall architecture of the parser is depicted in Figure 1. The approach
implements discourse parsing as a pipeline of several tasks such that connective and argument
span decisions are cast as sequence labeling and sense decisions as classification.

The discourse parsing pipelines starts with the identification of discourse connectives and their
spans (Discourse Connective Detection (DCD)), and is followed by Connective Sense Classi-
fication (CSC) and Argument Position Classification (APC) steps. While CSC assigns sense to
explicit discourse relations, APC classifies them as intra- and inter-sentential (Same Sentence
(SS) and Previous Sentence (PS) Argument 1). Both tasks operate using the connective span
tokens only.

With respect to the decision of the Argument Position Classification the pipeline is split into
explicit and non-explicit tasks. For the explicit relations, specific Argument Span Extraction
(ASE) models are applied for each of the arguments with respect to their begin intra- or inter-
sentential. Since Argument 2 is syntactically attached to the discourse connective, its identi-
fication is easier. Thus, for the intra-sentential (SS) relations, models are applied in a cascade
such that the output of Argument 2 span extraction is the input for Argument 1 span extraction.
For the inter-sentential (PS) relations, on the other hand, a sentence containing the connect-
ive is selected as Argument 2, and the sentence immediately preceding it as a candidate for
Argument 1.

For non-explicit discourse relations, a set of candidate argument pairs is constructed using
adjacent sentence pairs within a paragraph and removing all the sentence pairs already iden-
tified as inter-sentential explicit relations. Each of these argument pairs is assigned a sense
using Non-Explicit Relation Sense Classification (NE-RSC) models and their argument spans
are extracted using Non-Explicit Argument Span Extraction step.
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In the discourse parser, the Non-Explicit Relation Sense Classification, Connective Sense
Classification, and Argument Position Classification tasks are cast as supervised classifica-
tion using AdaBoost algorithm [20] implemented in icsiboost [18]. The span extraction tasks
(Discourse Connective Detection and explicit and non-explicit Argument Span Extraction), on
the other hand, are cast as token-level sequence labeling with CRFs [29] using CRF++ [28].
Besides training the CRF models for ASE, for inter-sentential Argument 1 span and both non-
explicit argument spans, we also make use of the ‘heuristics’: taking an argument sentence as
a whole and removing leading and trailing punctuation [30; 52]. In the next section we describe
the features used for the tasks.

2.2.2 Features

All the discourse parsing sub-tasks (both classification and sequence labeling) except Non-
Explicit Relation Sense Classification make use of token-level features. However, the feature
sets for each task are different. Compared to the version of the parser developed within Period
2, the feature sets are different; thus, additional descriptions are provided together with the old
ones.

Token-Level Features Table 3 gives an overview of feature sets per task. Besides
tokens and POS-tags, the rest of the features are described below.

Chunk-tag is the syntactic chunk prefixed with the information whether a token is at the begin-
ning (B-), inside (I-) or outside (O) of the constituent (i.e. IOB format) (e.g. ‘B-NP’ indicates
that a token is at the beginning of Noun Phrase chunk). The information is extracted from
constituency parse trees using chunklink script [10].

IOB-chain is the path string of the syntactic tree nodes from the root node to the token, similar
to Chunk-tag, it is prefixed with the IOB information. For example, the IOB-chain ‘I-S/B-VP’
indicates that a token is the first word of the verb phrase (B-VP) of the main clause (I-S).The
feature is also extracted using the chunklink script [10].

Dependency chain [52] is a feature inspired by IOB-chain and is the path string of the functions
of the parents of a token, starting from the root of a dependency parse.

VerbNet Class [27] is a feature intended to capture attributions. The feature requires lemmas,
which were extracted using TreeTagger [48].

Connective Label and Argument 2 Label are the output labels of the Discourse Connective
Detection and Argument 2 Span Extraction models respectively.

Using templates of CRF++ the token-level features are enriched with ngrams (2 & 3-grams)
in the window of ±2 tokens, such that for each token there are 12 features per feature type:
5 unigrams, 4 bigrams and 3 trigrams. All features are conditioned on the output label inde-
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Feature DCD CSC APC ASE: SS ASE: PS NE-ASE
A1 A2 A1 A2 A1 A2

Token Y Y Y Y Y Y Y Y Y
POS-tag Y Y Y Y Y Y Y
Chunk-tag Y
IOB-chain Y Y Y Y Y Y Y Y
Dependency chain Y
VerbNet class Y
Connective Label Y Y Y
Argument 2 Label Y

Table 3: Token-level features for classification and sequence labeling tasks: Discourse Connective
Detection (DCD), Connective Sense Classification (CSC), Argument Position Classification (APC), and
Argument Span Extraction (ASE) of intra- (SS) and inter-sentential (PS) explicit and non-explicit (NE)
relations.

pendently of each other. Additionally, CRFs consider the previous token’s output label as a
feature.

Argument and Relation-level Features In this section we describe the features
used for Non-Explicit Relation Sense Classification. Previous work on the task makes use of
a wide range of features; however, due to the low state-of-the-art on the task, we focused on
the following features: sentiment polarities from MPQA lexicon [61], Brown Clusters [55], and
VerbNet [27]. Similar to VerbNet Class feature, described above, lemmas from TreeTagger [48]
are used to compute the polarity features.

There are four features generated for Polarity : (1-2) Individual argument polarities computed
from token-level polarities as a difference of counts of positive and negative polarity words.
The feature is assigned either ‘negative’ or ‘positive’ value with respect to the difference. (3)
The concatenation of the argument polarity values (e.g. negative-positive). (4) The boolean
feature indicating whether the argument polarities match.

The Brown Cluster and VerbNet features are extracted only for specific tokens. Starting from
the dependency parse trees of the arguments we extract the main verb (root), subject (includ-
ing passive), direct and indirect objects for each of them. Since for extracting VerbNet features
we make use of lemmas, the lemmas themselves are considered for classification as well.
Similar to polarity, the VerbNet features (4) are main-verbs’ classes of the arguments, their
concatenation, and a boolean feature indicating their match.

The Brown Cluster and Lemma features are main-verbs’ brown clusters and lemmas, their
concatenation and boolean features for matches (4). Unlike VerbNet, these features are also
generated for a Cartesian product for the arguments’ subject, direct and indirect objects. Con-
sequently, there are 4 features for verbs and 24 for other dependency roles (3 + 3 + 9 + 9) per
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feature type.

2.2.3 Individual Modules

In this section we provide implementation details for the individual components of the discourse
parser. We first address explicit and then non-explicit relations.

Explicit Discourse Relations

The explicit relation pipeline consists of Discourse Connective Detection, Connective Sense
Classification, Argument Position Classification and Argument Span Extraction tasks. Con-
nective Sense Classification and Argument Position Classification components did not un-
dergo any change from Period 2; the other components are described below.

Discourse Connective Detection Since Discourse Connective Detection is the first
step in discourse parsing, the performance of the task is critical. The task is cast as sequence
labeling with CRFs. The performance of the models is tuned by feature ablation to yield a
model that achieves F1 of 0.9332 on the development set. The best model is trained on cased
tokens, POS-tags, Chunk-tag and IOB-chain features.

Argument Span Extraction Argument Span Extraction is the main focus of the de-
velopment. We train CRF model for each of the arguments of the intra- and inter-sentential
relations considering a single sentence as a candidate (i.e. all multi-sentence relations are
missed). As a candidate for the inter-sentential Argument 1 we consider only immediately
preceding sentence (effectively missing all non-adjacent Argument 1 relations).

Since Argument 2 models make use of connective span labels as a feature, and intra-sentential
Argument 1 model makes use of both connective and Argument 2 labels; these models are
trained using reference annotation spans. For the Argument Span Extraction of inter-sentential
Argument 1, additional to the training of the CRF models we also make use of the heuristic,
that takes the sentence as a whole and removes leading and trailing punctuation.

There are 4 CRF models for the task with the additional heuristic for the inter-sentential Ar-
gument 1. The feature sets for each of the models are selected such that they maximize the
F-measure of both arguments together.

The CRF model for the inter-sentential Argument 1 yields higher performance than the heur-
istic. However, the submitted system exploits the heuristic, since the difference between the
two for the both argument spans is not large (0.4981 vs. 0.4936 for the heuristic).
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Task

Connective
Arg 1
Arg 2
Arg 1+2
Parser

Explicit
Dev Test Blind

0.9332 0.9243 0.8856
0.5566 0.4964 0.5028
0.7907 0.7651 0.7205
0.4936 0.4456 0.4184
0.4589 0.3960 0.3174

Non-Explicit
Dev Test Blind

– – –
0.6951 0.6558 0.6683
0.7451 0.6778 0.7911
0.5940 0.5180 0.5805
0.2089 0.1756 0.1946

All Relations
Dev Test Blind

0.9332 0.9243 0.8856
0.6417 0.5890 0.5991
0.7664 0.7188 0.7586
0.5471 0.4844 0.5060
0.3246 0.2780 0.2510

Table 4: Task-level and end-to-end F1-measures of the discourse parser on the development, test, and
blind test sets of CoNLL 2015/2016 Shared Task for explicit and non-explicit relations individually and
jointly for all relations. The task-level performances are reported with the error propagation. Thus, the
sense classification performances are equivalent to the end-to-end parser performances.

Non-Explicit Discourse Relations

The non-explicit relation parsing pipeline consists of Relation Sense Classification (NE-RSC)
and Argument Span Extraction (NE-ASE) tasks. Even though, NE-ASE is applied after NE-
RSC with the idea of exploiting classification confidences for filtering out the candidate rela-
tions, the two tasks are fairly independent.

Non-Explicit Relation Sense Classification The set of features for the task is
described in Section 2.2.2. It is the only task that makes use of the argument and relation
level features. Due to the low state-of-the-art on the task, the focus is on the development
of the models that maximize the performance of the majority senses – EntRel and Expan-
sion.Conjunction. The flat classification mode is considered as it yields higher performance for
these senses (e.g. for EntRel the classification into 4 top-level senses + EntRel yields F1 of
≈ 0.30, while flat classification into 14 full senses + EntRel F1 of 0.44).

Non-Explicit Argument Span Extraction The task is implemented similar to the
Argument Span Extraction of the inter-sentential Argument 1, and considers the same feature
set (cased token, POS-tag, and IOB-chain). Similarly, we experiment with the span extraction
heuristic by only removing leading and trailing punctuation.

Unlike explicit relations, the CRF models for the non-explicit argument span extraction perform
significantly better than the heuristics. However, due to the error propagation from the Relation
Sense Classification task, the heuristics yield the higher F1-measure for the end-to-end parsing
of non-explicit relations. Thus, the system contains purely heuristic Non-Explicit Argument
Span Extraction.
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System P R F
Period 3 0.2622 0.2407 0.2510
Period 2 0.2094 0.2283 0.2184

Table 5: Precision (P), recall (R) and F1 (F) of the end-to-end discourse parsing on the blind test set for
the Period 2 and Period 3 parsers.

2.2.4 End-to-End Parsing and Sub-component Performances

The end-to-end parsing performance is evaluated within CoNLL 2016 Shared Task on Shallow
Discourse Parsing on a per-discourse relation basis on a PDTB [42] development and test sets
(sections 22 and 23, respectively), and a blind test set specifically annotated for the shared
task. For the evaluation, a relation is considered to be predicted correctly only in case the
parser correctly predicts (1) discourse connective head, (2) exact spans and labels of both
arguments, and (3) sense of a relation. The reported evaluation metrics are (1) explicit dis-
course connective, (2-4) Argument 1 and Argument 2 spans individually and together, and the
sense of a relation. The reported micro-F1 measure of the sense classification is equivalent to
the end-to-end parsing performance as it considers the error propagation from the upstream
tasks. The metrics are reported for explicit and non-explicit relations individually and jointly
in Table 4. The system achieves end-to-end parsing F1 of 0.3246, 0.2789 and 0.2510 on the
development, test and blind test sets respectively.

2.2.5 Comparison to Period 2 System

We first compare the system performance to the Period 2 system on the end-to-end parsing
score on the blind test set (see Table 5). The current system outperforms the Period 3 system
on all the metrics.

The major change from Period 2 is the elimination of the Non-Explicit Relation Detection step.
The step classified non-explicit relation candidates into relations and non-relations. However,
the ratio of non-related adjacent sentence pairs usually is very low (circa 1%). Consequently,
the step was penalizing the performance on non-explicit relations. As it can be observed from
Table 6, there is a major improvement in performance for non-explicit argument spans.

The other changes are in the feature sets of Connective Detection and the Argument Span
Extraction of the explicit intra-sentential Argument 2. For the former we improved the perform-
ance on the development set, but the performance on the test and blind test sets dropped
(see Table 7). For the latter, we introduced a new feature – VerbNet [27] classes – intended to
capture the attribution spans. From the results it appears that the feature is useful, as they are
better despite the lower connective detection performance.

D4.3 The SENSEI Discourse Analysis Tools, 3 | version 1.0 | page 17/51



System Dev Test Blind
Arg 1+2 Span Extraction

Period 3 0.5940 0.5180 0.5805
Period 2 0.4000 0.3730 0.3831

Non-Explicit Parsing
Period 3 0.2089 0.1756 0.1946
Period 2 0.1577 0.1330 0.1577

Table 6: F1 for the non-explicit argument extraction and parsing.

System Dev Test Blind
Discourse Connective Detection

Period 3 0.9332 0.9243 0.8856
Period 2 0.9219 0.9271 0.8992

Explicit SS Arg 2
Period 3 0.7907 0.7651 0.7205
Period 2 0.7748 0.7616 0.7068

Table 7: F1 for the Discourse Connective Detection and explicit intra-sentential Argument 2 span ex-
traction.

2.3 Discourse Connective Detection in Spoken Con-
versations

Mainly due to the lack of discourse annotated dialog data, most of the research on discourse
parsing has focused on written text; and discourse parsers heavily rely on features extracted
from syntactic parse trees (e.g. [30; 50; 52]). Unfortunately, syntactic parsers trained on written
text behave poorly on dialog data [9], since the latter contain disfluencies and no sentence
segmentation. In this section we present experiments on discourse connective detection –
initial step in Penn Discourse Treebank (PDTB) [42] style discourse parsing – in Italian spoken
dialogues using acoustic and lexical features.

Detection of discourse connectives from English text using syntactic features has a very high
performance (F1 = 94.19) [37]. Detection of discourse connectives from spoken dialogues is
more challenging than from written text. In addition to the coordination of non-discourse units
and polysemy, which occur both in dialogues and written text, in spontaneous conversations
words that can function as discourse connectives can also function as discourse markers [47].
While discourse connectives relate discourse units, discourse markers are used for discourse
organization and turn management, e.g. allora (so) in Example (1) is a discourse connect-
ive and in (2) it is a discourse marker [54]. Our goal is to discriminate between discourse
connective category of a word token and all other usages.
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(1) [In questo momento il palazzo non è collegato]Arg1

Allora [è meglio collegarlo]Arg2

([At this moment the building is not connected ]Arg1

So [we’d better connect it]Arg2)

(2) Allora vediamo un po’ ecco qua
(So let’s see here it is)

Figure 2: Examples of allora (so) used as a discourse connective (1) and as a discourse marker (2).

We cast discourse connective detection as a binary classification task using lexical and acous-
tic features. We focus on the 10 most frequent Italian discourse connectives in the LUNA
corpus [16] of human-human spoken conversations. Since our goal is to explore the relev-
ance of acoustic and lexical context for the task, we experiment with features extracted from
connective candidate spans and their left and right contexts in the window of ±2 tokens. We
observe that both lexical and acoustic context have mixed effect on the detection of specific
connectives.

2.3.1 LUNA Discourse Annotation

A subset of 60 dialogues from Italian LUNA Human-Human Corpus [16] was annotated [54]
for discourse relations following Penn Discourse Treebank (PDTB) [42] guidelines. Out of total
1,606 annotated discourse relations, 1,052 are explicit discourse relations, that are signaled
by 85 unique discourse connectives. Here we focus only on the 10 most frequent ones that
are listed in Table 8 with their frequencies in data (Data Freq. column). This set of connectives
accounts for 75.7% of all annotated explicit discourse relations. Some of the listed connectives
additionally occur as tokens of other multi-word connectives (e.g. che is part of visto che). The
amount of such multi-word connectives is 6.2%, most frequent being che (4.5%). To reduce
noise, these multi-word connectives are removed from data.

The data (60 dialogues) is split into training, development and test splits as 42, 6, and 12
dialogues respectively. The distribution of the selected connectives into training and test sets
after data pre-processing is given in Table 9.

2.3.2 Feature Extraction

In this section we first describe data pre-processing; then feature extraction and the features
themselves.
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Connective Data Freq.
e (and) 160 15.2%
perchè (because) 138 13.1%
allora (so) 91 8.7%
però (but) 87 8.3%
ma (but) 71 6.7%
quindi (then/so) 69 6.6%
poi (then) 62 5.9%
se (if) 60 5.7%
cosı̀ (so) 33 3.1%
che (that) 25 2.4%
Top 10 796 75.7%
Rest (75) 256 24.3%
Total (85) 1,052 100%

ASR Freq.
154 96.2%
136 98.6%

87 95.6%
86 98.9%
71 100%
67 97.1%
59 95.3%
58 96.7%
31 93.9%
23 92.0%

772 96.3%

Table 8: The 10 most frequent connectives in the LUNA Corpus and their % from total of explicit
relations. ASR Freq. column gives % of connectives recognized by ASR.

Word 02: Train 03: Test
CONN O CONN O

e 97 43.3% 127 56.7% 40 46.0% 47 54.0%
perchè 81 83.5% 16 16.5% 35 83.3% 7 16.7%
allora 61 16.3% 313 83.7% 20 16.5% 101 83.5%
però 58 89.2% 7 10.8% 14 63.6% 8 36.4%
ma 45 56.3% 35 43.8% 16 55.2% 13 44.8%
quindi 44 57.9% 32 42.1% 17 51.5% 16 48.5%
poi 45 63.4% 26 36.6% 6 37.5% 10 62.5%
se 30 26.5% 83 73.5% 17 36.2% 30 63.8%
cosı̀ 20 44.4% 25 55.6% 7 35.0% 13 65.0%
che 11 3.5% 302 96.5% 12 8.6% 127 91.4%
* 492 33.7% 966 66.3% 184 33.1% 372 66.9%

Table 9: Distribution of the 10 most frequent connectives (CONN) in training and test sets with the
frequencies of their non-discourse connective usages (O).
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Data Pre-processing

The discourse annotation of the LUNA corpus was done using text extracted from manual tran-
scriptions that do not contain word beginning and end time information. Thus, in order to be
able to extract acoustic features for connective candidates, the text is aligned with the speech
signal. The boundaries of words in the speech signal are obtained using forced alignment
between word-level manual transcription and the speech signal within the manually segmen-
ted turn of a dialog. For the forced alignment, we use Automatic Speech Recognizer (ASR)
that was trained on the LUNA Human-Human corpus using Kaldi [40] with Speaker Adaptive
Training (SAT). The Word Error Rate (WER) of the ASR on the LUNA Human-Human test set
is 39.7%. The ASR system is also used to produce automated transcriptions of manually seg-
mented turns to match with discourse connectives in the corpus. Due to the error rate of the
ASR, about 3.7% of discourse connectives are not recognized and are removed from data (see
Table 8). After that, forced alignment is used to extract the features discussed in the following
subsection.

The MFCC features were spliced, taking 3 frames from each side of the current frame, fol-
lowed by Linear Discriminant analysis (LDA) and Maximum Likelihood Linear Transform (MLLT)
feature-space transformations reducing the feature space. Then, we used Speaker Adaptive
Training (SAT). The Word Error Rate (WER) for our ASR system is 39.70% on official LUNA-HH
test set.

Features

Several sets of features are extracted for supervised machine learning from the force-aligned
ASR output. Lexical features are tokens and, since we train connective specific models, they
appear only as lexical context features. The difference between manual and ASR output con-
text tokens is negligible (lower that 0.1%). The rest of the features used in the experiments is
described below.

Duration and Silence Features: The time it took to utter a connective candidate and the
duration of pauses before and after it might also carry information relevant to discourse. Thus,
word and silence durations are extracted from the forced alignment and used as features for
classification (3 features).

Acoustic Features: Acoustic frame-wise Low-Level Descriptors (LLD) are extracted using
openSMILE [17] with the Frame Size = 25 ms and Frame Step = 10 ms. The extracted LLD
are prosodic features (3) – fundamental frequency (F0), pitch, and loudness, all with their
derivatives (2 per feature) – and spectral features (2) – flux and centroid (11 LLD in total).

We consider 3 segments – connective candidate token (w) and its left (l) and right (r) contexts
(up to 2 words taken as a single segment), and acoustic features are extracted for each seg-
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M̄wB̄w Ēw B̄rĒl

word, wleft, l right, r

fi,1 = M̄w − B̄w;

fi,2 = Ēw − M̄w;

fi,3 =

{
B̄w − Ēl : l 6= ∅
B̄w − m̄spk : otherwise ;

fi,4 =

{
B̄r − Ēw : r 6= ∅
m̄spk − Ēw : otherwise ;

Figure 3: Acoustic difference feature generation. Intra-word variation is represented by features fi,1 and
fi,2 and cross-word variation by fi,3 and fi,4; where i is a Low-Level Descriptor (LLD).

ment separately. In each segment, per frame feature values are normalized by Z-score with
speaker-based mean (m̄spk) and its standard deviation (σspk), which are calculated using all the
dialog turns of a corresponding speaker that do not contain discourse connective candidates.
For normalization purposes overlapping turns are considered as a separate speaker.

Each segment S is later split into three parts – beginning (BS), middle (MS) and end (ES); and
arithmetic mean of all the frame feature values is calculated for the segment parts: B̄S, M̄S, and
ĒS. As a result, there are 9 values per LLD for a connective candidate: means of beginning,
middle and end parts for a candidate itself and its right and left contexts. Consequently, each
candidate is represented by 99 acoustic features (11 LLD * 9 parts).

Acoustic Difference Features: In order to capture changes in the prosody within a word or
with respect to context, using the acoustic features described above, we generate four acoustic
difference features. For intra-word variation we calculate two differences – between middle
(M̄w) and beginning (B̄w) and between end (Ēw) and middle (M̄w) parts of the word segment.
For cross-word variation, the computed differences are between beginning part of the word
(B̄w) and the final part of left context (Ēl) and between beginning part of the right context (B̄r)
and the end part of the word (Ēw). In case of missing left or right context, the difference is
computed with respect to the speaker mean m̄spk (See Figure 3). The difference features are
computed for each of 11 LLD; consequently, there are 44 difference features in total (11 LDD
* 4 differences).

2.3.3 Experiments and Results

Our goal is to study the relevance of the lexical and acoustic contexts for discourse connective
detection from speech. The task is cast as binary discourse connective vs. all classification
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using acoustic and lexical features. Context is defined as features extracted from the segments
to the left and right of a connective candidate (i.e. S ∈ {l, r}). Since pauses before and after
word are not in the word segment, they are considered as context.

For classification we use AdaBoost algorithm [20] implemented in icsiboost [18]. All models
are trained on 1,000 iterations, and, despite the unbalanced nature of our data, we do not
apply any balancing techniques at this stage.

We describe four sets of experiments: (1) using acoustic features from only connective can-
didate segment (i.e. without context); (2) using acoustic features from only context segments
(i.e. from context); (3) using acoustic features from all the segments (i.e. with context); and
(4) using lexical context in isolation and with acoustic features. For settings 1-3 we train and
evaluate models on the three sets of features described above – durations, acoustic features,
and acoustic difference features – and their combination through vector fusion. For setting 4
we fuse lexical context with the fused vectors from settings 1-3.

Standard precision, recall and F1 are used as evaluation metrics; however, due to space con-
siderations, we report only F1. We also compute a micro-averaged F1 for whole connective set
and test it for statistical significance. Statistical significance is measured using McNemar’s χ2

test with Yates’ correction.

The Baseline The baseline of discourse connective detection is computed as a majority
decision. That is, if a word appears more frequently as a connective in the training set, it is
labeled as such in the test set. While some connectives have relatively high baselines (e.g.
perchè: F1 = 90.91 and però: F1 = 77.78), the micro-averaged F1 is low (53.99) since frequent
discourse connectives e and allora mostly appear in non-discourse roles. For comparison,
token only model on PDTB yields F1 = 75.33 [37].

An alternative to training per connective models is a binary classification pooling all connect-
ives together. The majority baseline for models trained using only connective tokens is identical
for both settings. In preliminary pooled evaluation, only lexical context features have produced
models outperforming the baseline. Thus, we focus on connective specific models and evalu-
ate the relevance of acoustic and lexical context for each connective separately.

Connective Detection without Acoustic Context Connective detection without
context implies not using features outside of the connective candidate time frame; thus, they
are word duration, acoustic features extracted from the word segment and within-word acous-
tic difference features, and their combinations. Results are reported in Table 10. All micro-
averaged F1, except for duration model (D), are significantly lower than the baseline. However,
we observe that all the features contribute to the detection of a specific connective. Specific-
ally, to the detection of the connectives mostly having non-discourse usages (i.e. e, allora, se,
and cosı̀). Fusion of the features (ALLN ) does not produce the best model for all, but se.
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Conn. BL
e 0.00
perchè 90.91
allora 0.00
però 77.78
ma 71.11
quindi 68.00
poi 54.55
se 0.00
cosı̀ 0.00
che 0.00
Micro 53.99

D AcN DiffN
11.32 25.71 46.58
88.00 89.19 84.93

0.00 5.71 17.02
77.78 74.29 74.29
68.75 60.00 64.52
61.90 51.28 54.05
47.06 52.63 46.15
21.43 37.50 25.00
28.57 62.50 40.00

0.00 0.00 0.00
50.46 49.86 51.37

ALLN

36.62
83.33
11.76
68.75
64.52
66.67
33.33
38.89
50.00
0.00

51.54

Table 10: F1 of models trained using non-contextual features: duration (D), acoustic features (AcN )
and intra-word acoustic difference features (DiffN ) in isolation and in combination (ALLN ). BL is the
majority baseline.

Connective Detection from Acoustic Context Connective detection from context
implies using only features extracted from the left and right context of a connective candidate
and their fusion. Context also includes lexical tokens in the window ±2, which are evaluated
separately. Micro-averaged F1 in Table 11, even thought often higher, are not significantly
different from the baseline. Neither they are significantly different from the setting without
context. Similar to the setting without context, the acoustic context features do contribute
to the detection of the connectives mostly having non-discourse usages; however, they also
contribute to the detection of others. Fusion of the features (ALLC) does not produce the best
model for all, but cosı̀.

Connective Detection with Acoustic Context Connective detection with context
implies that we can use all the features. Micro-averaged F1 in Table 12 are not significantly
different from either baseline or the previous settings, for all but acoustic features: F1 for all
acoustic features (Ac) is significantly higher than for the models without context (AcC). Similar
to the previous settings, there are individual contributions to specific connectives and the fusion
produces the best model only for cosı̀.

Connective Detection with Lexical Context In this setting we evaluate the relev-
ance of lexical context in isolation and through vector fusion with all speech derived features
(durations, acoustic and acoustic difference) in the previous three settings. The lexical context
is tokens in the window of ±1 or ±2 tokens. Results are reported in Table 13 (for space con-
siderations we report only ±1 window performance). The micro-averaged F1 for lexical context
in the window of ±1 tokens performs significantly better than the baseline, while in the window
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Conn. BL
e 0.00
perchè 90.91
allora 0.00
però 77.78
ma 71.11
quindi 68.00
poi 54.55
se 0.00
cosı̀ 0.00
che 0.00
Micro 53.99

S AcC DiffC
36.92 56.47 48.84
89.19 91.89 80.00

0.00 15.38 19.35
77.78 87.50 74.29
71.43 55.56 62.50
68.09 48.48 70.97
54.55 47.06 15.38

0.00 33.33 33.33
0.00 42.11 53.33
0.00 0.00 11.11

55.49 56.45 53.41

ALLC

43.04
90.67
13.79
77.78
58.82
64.52
37.50
22.22
58.82

0.00
55.06

Table 11: F1 of models trained on only acoustic contextual features: silence durations (S), acoustic
features from context (AcC), and cross-word acoustic difference (DiffC) in isolation and in combination
(ALLC). BL is the majority baseline.

of ±2 is not. Thus, ±1 window is used for vector fusion with other features.

The addition of lexical context to the speech-derived features does not produce significant
changes to micro-averaged F1. All acoustic-lexical models are not significantly different from
the baseline or their equivalents without lexical context. The lexical context model with ±1
token window is significantly better than the rest.

However, we again observe that individual connective performances are boosted. For con-
nectives allora, quindi and se the fusion of acoustic features with lexical context produces the
best results. In order to estimate the upper bound of the model combination (which could be
achieved using features selection on the development set) we calculate the oracle of the best
models per connective (O). The micro-averaged F1 of the oracle is 68.53.

Overall, we observe that connectives behave differently with respect to acoustic and lexical
context. Half of the connectives (e, perchè, ma, che, cosı̀) achieve the best results using
only lexical context. The rest is quite diverse: se using lexical, but not acoustic context; allora
using lexical and acoustic context without the features from the word segment, quindi using
both lexical and acoustic contexts with the features from the word segment. The remaining
two connectives poi and però perform better without lexical context: però using just acoustic
features from context and poi using all the acoustic features; no acoustic difference or duration
features for both.

All these differences lead us to conclude that discourse connectives are not uniform and dif-
ferent features are required to distinguish them from their non-discourse connective usages.
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Conn. BL
e 0.00
perchè 90.91
allora 0.00
però 77.78
ma 71.11
quindi 68.00
poi 54.55
se 0.00
cosı̀ 0.00
che 0.00
Micro 53.99

DS Ac Diff
33.85 48.00 36.62
84.93 89.47 84.06

0.00 17.65 18.75
74.29 77.78 76.47
76.47 68.57 77.78
61.11 60.61 64.52
47.06 66.67 50.00
10.00 42.86 18.18
28.57 52.63 50.00

0.00 0.00 13.33
52.12 58.95 53.33

ALL
32.43
90.67

7.69
74.29
62.50
70.27
40.00
14.81
53.33

0.00
52.87

Table 12: F1 of models trained on both contextual and non-contextual features: word and silence dur-
ations (DS), all acoustic features (Ac), all acoustic difference features (Diff), and their vector fusion
(ALL). BL is the majority baseline.

Conn. BL
e 0.00
perchè 90.91
allora 0.00
però 77.78
ma 71.11
quindi 68.00
poi 54.55
se 0.00
cosı̀ 0.00
che 0.00
Micro 53.99

L1

57.97
91.89
16.67
66.67
78.05
44.44
57.14
40.00
66.67
86.96
64.93

ALLN ALLC ALL
39.47 39.02 37.84
87.67 87.67 90.67
14.29 31.25 7.69
72.73 77.78 74.29
55.17 50.00 66.67
66.67 66.67 74.29
33.33 28.57 40.00
47.06 23.08 20.69
50.00 66.67 42.86
0.00 0.00 0.00

54.29 54.08 54.60

O
57.97
91.89
31.25
87.70
78.05
74.29
66.67
47.06
66.67
86.96
68.53

Table 13: F1 of models trained on using lexical context in the window of ±1 tokens (L1) in isolation and
in combination with other features: acoustic features without context (ALLN ), acoustic features from
context (ALLC), and all acoustic features (ALL). BL is the majority baseline and O is the oracle of the
best performing connective specific models.
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2.3.4 Conclusion

We have observed that both lexical and acoustic context have mixed effect on the task of
Discourse Connective Detection from speech. While lexical context model significantly out-
performs the baseline with F1 = 64.93, the oracle of combination with acoustic context has
F1 = 68.53. The conclusion is that the task of discourse connective detection is hard, but lex-
ical features provide enough discriminative power to get improvement of more than 10 points
over the majority baseline.
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3 Task 4.2: Extracting event and temporal
structure from conversations

In this task we develop tools for identifying events and temporal relations in conversations.

3.1 Applications
As a baseline implementation for English, we adapted for SENSEI a combined GATE pipeline
originally developed in the ARCOMEM project [33; 34]. In Period 3 (since the work described
in D4.2), we have modified it to add temporal extraction, so it now consists of the following
GATE processing resources. We removed the condition that skipped documents which TextCat
tagged as not in English, because this was not reliable enough for short social media texts and
in our main use case (comments in The Guardian) we could rely on the fact that they are in
English.

1. Basic NLP tasks for English (tokenization, sentence-splitting, POS-tagging, lemmatiza-
tion).

2. Named entity recognition for English using ANNIE (gazetteers and rules), and ortho-
graphic coreferencing of named entities.

3. Noun phrase and verb phrase chunking.

4. Date normalization (this will be especially useful for anchoring temporal expressions in
the near future).

5. Event detection using gazetteers (currently oriented towards financial and major political
events and industrial action) and rules.

6. Event detection using a large gazetteer of verb nominalizations and rules.

7. Temporal extraction (“TIMEX” detection) using the GATE-Time [15] plugin, which uses
the HeidelTime1 tagger.

8. Sentiment detection using gazetteers and rules.

9. Processing the annotations to select the important ones (events, temporal expressions,
opinions) for transfer back to the conversational repository.

1https://github.com/HeidelTime/heideltime
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In Period 3, we also developed an alternative version using the GATE SentiStrength [32] plugin
instead of the gazetteers and rules in Step 8 above. The SentiStrength system [53] produces
good results but the core jar file (required to use the GATE plugin) is available only under
a commercial licence except for academic research, so we will publish this component with
both GATE applications but without that core file, which users would have to obtain from the
University of Wolverhampton2 under either the commercial or academic licence.

The sentiment detection component used is determined by the GATE application selected in
the run-time configuration file, and we provide files for each option.

3.2 Integration
The gate-pipelines Java wrapper component, developed specifically to interact with the SEN-
SEI document repository and described in D4.2, has been improved in various ways, most
notably to allow repository document features to be copied into the GATE documents before
they are processing by the GATE applications. We added this feature principally to allow doc-
ument (comment) timestamps to be used by the HeidelTime tool described above.

The wrapper and GATE pipeline were successfully used in the “shared task” of linking readers’
comments to sentences in newspaper articles, as reported at SIGDIAL [3] and MultiLing [2].

3.3 Conclusion
We have provided components for event, time, and sentiment detection, as well as for running
GATE applications in general, and integrated them successfully with the conversational repos-
itory. We were not able to use their outputs in the formal evaluation for social media described
in D6.3 and D1.4, but we have developed an additional version of the prototype user interface
for The Guardian’s comments which colour-codes sentiment in the users’ comments.

2http://sentistrength.wlv.ac.uk/

D4.3 The SENSEI Discourse Analysis Tools, 3 | version 1.0 | page 29/51



4 Task 4.3: Intra-document coreference
for conversations and social media

In this task we tune statistical intra-document coreference algorithms to work with conversa-
tional and social media data using the BART platform.

4.1 Depositing coreference data in the Reposit-
ory

In order to deposit coreference data into the Repository which was described in D5.1 of period
1, first a converter from BART’s output format (MMAX) to JSON had to be developed. A Data
Flow diagram illustrating the full process is shown on Figure 4.

The overall process goes as follows. First, documents are retrieved from the repository in
JSON format (each individual comment is considered a separate document). Next, a news
article and all its comments are assembled into one composite document and temporarily
stored as text with tab indentations to preserve reply structure. Then, the composite text
document is processed by BART whose output is MMAX (standoff XML). Next, the MMAX
output is converted to JSON and finally posted back to the repository.

Figure 4: Data Flow Diagram for BART and Repository Integration.

A sample snippet of JSON output is the following:

{"BART_Coreference":[

{"start":0, "end":11, "type":"markable", "chain_ID":100},

{"start":127, "end":138, "type":"markable", "chain_ID":100},
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Table 14: USFD Corpus.

Number of words 68853
Number of sentences 3802
Number of markables 22107
Number of coreference chains 2333

{"start":188, "end":190, "type":"markable", "chain_ID":100},

...

]

}

In the above JSON representation, coreference chains are allowed to cross over documents
in the repository via a unique global ID, named chain ID. It is important to note the differences;
within the composite document representation used by BART coreference chains live within
the same document, but when stored in the repository each comment is stored as a separate
document and hence the global ID allows for coreference chains to stretch across different
documents in the repository.

4.2 Adapting intra-document coreference to
social media

4.2.1 The USFD Corpus

In order to annotate the USFD corpus with coreferences we followed the same procedure
as for the ONFORUMS corpus [26]; the annotation scheme is a variant of the LiveMemories
annotation scheme [45] which in turn is based on the ARRAU annotation scheme [39]. In this
corpus all noun phrases are taken as mentions, and the whole noun phrase is considered (with
all its embedded NPs). All anaphoric relations of identity between any pairs of mentions are
annotated. Coordinations are also treated as mentions, and annotated.

Key corpus statistics are shown in Table 14.

As can be seen from Table 14, this is the largest data set of all three sets that were annotated
during the project, consisting of nearly 69K words. It is also a data set prepared and ready for
the shared task ONFORUMS17 as explained in D7.5 and D7.6.
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4.2.2 The Effects of Layout on Coreference

The effect of discourse structure on anaphora (coreference) resolution was for many years one
of the main areas of research on anaphora [14; 19; 21; 22; 38; 43; 59] but has been paid much
less attention in recent years. This is due to at least two reasons. First, discourse structure
effects are much weaker in news text (the focus of much recent research on coreference) than
in task-oriented dialogue (the type of data that had motivated initial work such as Reichman’s
and Grosz and Sidner’s). And second, it is difficult to identify the discourse structure of a text
with sufficient accuracy.

The motivation for studying the effects of Layout on Coreference is based on two observations:
that discourse structure effects are much stronger in comment threads on online forums;
and that the structure of such threads can be identified much more easily on the basis of the
reply structure of the thread. Consider the following example from the comment thread in
response to an article in The Guardian:

(1) C1: The First Sea Lord, Sir George Zambellas, came closest to expressing it, calling the $3bn ship “a
national instrument of power”. Who is he planning to invade now?
↪→ C2: Which ‘nation’?
↪→ C3: He said it was an example of a big nation demonstrating what they do ... spend countless billions
on a vessel that will at best have no aircraft for at least 6-10 years and when there is enough support
vessels to defend this hulking lump. Lets gloss over the anti ship ballistic missiles that could render them
sitting ducks.
−→ C4: Agree regarding the time scale for fixed wing aircraft, however I’m not so sure about your statement
with regards to anti ship missiles...
−→ C5: There’s no such thing as an anti-ship ballistic missile...
−→ C6: I doubt that a ballistic missile would render them sitting ducks because they have to be aimed at
a fixed point and aircraft carriers are not fixed, they are moving...

In Example (1), comments C[1−6] constitute a typical online conversation thread; comments C2

and C3 are replies to comment C1 (first level) and comments C[4−6] are replies to comment C3

(second level). A key entity in this conversation thread is anti ship ballistic missiles and the
context in which the whole thread lives in is a news article titled ‘Supercarrier made in Britain
hailed as flagship for Better Together campaign’.

Now whilst the news article triggered numerous discussions on war ships, carriers and the
Scottish Independence referendum, this was the only conversation thread which discussed
anti ship ballistic missiles, and hence, this entity is not accessible from outside this thread.
And, crucially, the structure of this thread can be readily recovered from the metadata about
the comment thread provided by The Guardian’s website.

To experiment with anaphora resolution in the online forums domain, we rely on the publicly
available BART toolkit [57; 58]. BART is a modular framework that allows for fast development
of coreference models. In particular, BART supports very straightforward feature engineering,
making it an ideal system for integrating different types of knowledge into coreference resolvers
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and evaluating their impact.

We have further extended BART by defining a number of new features capturing and exploit-
ing the structure of online conversation threads (see Example (1)). We define features around
the notion of ‘accessibility’ (in the discourse sense), which indicates whether a potential ante-
cedent for an anaphor is accessible or not to the anaphor depending on its position in the
thread. Currently we are working with four boolean features, two modeling strict accessibility
and two on loose accessibility:

1. Direct Strict Accessibility : on iff antecedent is within the current post or the directly
replied-to post

2. Transitive Strict Accessibility : on iff antecedent is on the path of the reply/layout structure,
allowing for transitive replies

3. Direct Loose Accessibility : on iff antecedent is anywhere within the same conversation
branch (no transitive replies)

4. Transitive Loose Accessibility : on iff antecedent is anywhere within the same conversa-
tion thread (including transitive replies)

We experimented with three machine learning models: Maximum Entropy (MXE), Decision
Trees (C4.5) and Support Vector Machines (SVM). And we tried five different feature config-
urations: no thread features (baseline), only direct, only transitive, direct and transitive and all
features.

We report here (see Table 15) results on 8 fold cross validation across five different CoNLL
metrics: MUC, B3, CEAFe, CEAFm and MELA3 produced by the official CoNLL scorer [41].

We set a statistical hypothesis test where the null hypothesis (H0) we are trying to reject is that
there is no difference between the four feature configurations involving thread features and
the baseline. In all cases we train the baseline along with the other feature configurations to
measure only the thread features contribution.

Then, within each model all feature configurations are tested against the baseline and we have
significant improvements as follows (see scores in bold face in Table 15):

• SVM on B3 metric with all features,

• Decision Trees (C4.5) on CEAFe metric with direct feature only, and

• Decision Trees (C4.5) on CEAFm metric with direct feature only
3This last one is a composite metric given by the following formula: MELA = (MUC +B3 + CEAF e) ∗ 0.33
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MXE C4.5 SVM
R P F1 R P F1 R P F1

MUC baseline 43.36 50.36 46.49 42.54 50.85 46.23 41.79 49.48 45.19
direct only 43.63 49.97 46.4 42.39 51.63 46.4 42.1 49.61 45.38

transitive only 43.43 50.38 46.56 42.66 51.04 46.36 42.02 49.79 45.44
direct and transitive 43.12 51.08 46.58 42.93 51.2 46.54 41.73 49.82 45.29

all features 43.29 51.78 46.97 43.07 51.65 46.8 41.64 50.63 45.55

B3 baseline 44.86 57.38 50.23 44.54 58.41 50.47 44.36 57.4 49.97
direct only 44.86 56.56 49.99 44.56 59.04 50.72 44.42 57.3 49.99

transitive only 44.90 57.23 50.23 44.6 58.27 50.47 44.38 57.55 50.05
direct and transitive 44.67 57.86 50.37 44.62 58.26 50.47 44.34 57.79 50.11

all features 44.76 58.64 50.72 44.69 58.79 50.74 44.32 58.6 50.41†

CEAFe
baseline 42.83 49.42 45.86 43.33 49.26 46.08 42.74 48.87 45.57

direct only 42.39 49.48 45.62 43.73 49.31 46.32† 42.76 49.05 45.66
transitive only 42.86 49.55 45.94 43.32 49.33 46.11 42.83 48.96 45.66

direct and transitive 43.11 49.41 46.01 43.27 49.39 46.1 43.0 48.95 45.75
all features 43.4 49.42 46.17 43.31 49.24 46.04 43.25 48.8 45.83

CEAFm
baseline 44.1 51.03 47.31 44.24 51.21 47.47 43.48 50.33 46.65

direct only 43.89 50.81 47.1 44.52 51.54 47.77† 43.54 50.41 46.72
transitive only 44.16 51.12 47.38 44.16 51.12 47.38 43.54 50.40 46.72

direct and transitive 44.11 51.07 47.34 44.17 51.13 47.39 43.62 50.49 46.8
all features 44.6 51.62 47.85 44.44 51.44 47.68 43.79 50.69 46.99

MELA baseline - - 47.05 - - 47.12 - - 46.44
direct only - - 46.86 - - 47.34 - - 46.54

transitive only - - 47.1 - - 47.17 - - 46.57
direct and transitive - - 47.18 - - 47.23 - - 46.58

all features - - 47.47 - - 47.38 - - 46.79

Table 15: Coreference Resolution Performance, 8 X Validation († sig. at α = 0.05).

This is three cases out of 60 test cases (4 x 5 x 3 , i.e., 4 different feature configurations,
5 metrics, 3 models). The MELA scores for SVMs and Decision Trees are near significance
levels (e.g., t = 1.78, critical t = 1.89). Sign Test on 8 folds is difficult, for example, we have
cases with 7 pluses and 1 minus which is p = 0.07 (again, almost 0.05), thus with 10 folds
would be better.

On the other hand we have not looked at differences across models. For example, in absolute
terms the Maximum Entropy models (MXE) seem to produce the best scores across metrics.

4.2.3 The Effects of Coreference on News Comment Clus-
tering

We also ran experiments on a higher level task in order to provide a task-based scenario for
evaluating Coreference improvements. The task at hand is news comments clustering.
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To this end, we have adopted the graph based approach described by Aker et al. [4]. Nodes in
the graph represent the comments and edges are created with weights capturing the similarity
between the comments. The resulting graph is converted to a square matrix whose rows and
columns correspond to nodes in the graph and whose cell values to weights. Two operations
are run on the square matrix to obtain the clusters: expansion and inflation. The expansion
operator is responsible for allowing flow to connect different regions of the graph. The inflation
operator is responsible for both strengthening and weakening this flow.

To generate a weight between two nodes or comments, Aker et al. [4] applied various features
ranging from similarity measures such as cosine similarity over the comment words and named
entity overlaps to features such as same thread and reply relationship between the comments.
We have extended their list of features with anophoric relationships to investigate the impact of
such pieces of information in comment clustering. The following features are added in addition
to the ones described by Aker et al.:

• Has same annotation id : This is a binary feature and returns 1 if both comments share a
common annotation id otherwise 0.

• Cosine between the annotation IDs: We determine all the annotation’ ids from both com-
ments and compute the cosine angle between annotation ids. Beforehand a dictionary
vector is created consisting of all the unique annotation ids, e.g. “1,2,3,4,5”. Each com-
ment is then represented using this vector. For each annotation id either a “1” or “0” is
included in the vector depending whether that id appears in the comment or not. E.g.
if the comment contains annotation ids “2” and “4” its vector gets the space “0,1,0,1,0”.
Based on these vectors we determine the cosine angle between two comments.

• Cosine between the mentions in the anaphora chain: A chain in the anaphora resolution
output consists of an antecedent and all anaphors referring to it. For each anaphor in
each comment we determine its anaphora chain, collect the words in the antecedent
(e.g. “Buckingham Palace”) and as well as of the anaphors (e.g. ”The Palace”). Then we
merge the words of the anaphora chains in word vectors and compute the cosine angle
between the merged versions of the word vectors. In the cosine vectors we use single
words.

• Cosine between the contents enriched with the mentions in the anaphora chain: In the
previous feature we used only the anaphora chains. In this feature we use the words in
the comments and the anaphora chains to compute the cosine score.

• Word2Vec on mentions in the anaphora chain: Word embeddings using Word2Vec [35]
have been extensively used to measure the semantic similarity between words. Our
word embeddings comprise the vectors published by Baroni et al. [7]. Using Word2Vec
we compute the cosine angle between the mentions in the anaphora chain. Before com-
puting the cosine angle we first remove from each comment stop-words as well as punc-
tuation, query for each word its vector representation and create a averaged sum of the
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word vectors. The number of remaining words in each comment is used to average
that comment. Finally, we use the resulting averaged sum vectors and determine their
similarity using the cosine similarity measure.

• Word2Vec on mentions in the anaphora chain as well as the comment contents: In addi-
tion to the previous feature we also add the comment contents and compute the cosine
between the Word2Vec representations.

Following Aker et al. [4], we sum the features using weighted linear combination and train the
weights using linear regression4 and gold standard clusters.

We run the experiments on clustering matching the cross validation experiments from the pre-
vious section5 and, hence, we use the same feature combinations to train models and produce
coreference outputs corresponding to each different feature combination. Then, we use the
various coreference outputs on a more general task of news comment clustering and gauge
performance changes. That is, the different coreference outputs are used to extract anaphoric
features described above in the first part of this Section 4.2.3, then these features are added
to the feature set reported by Aker et al. [4], comment clusters are generated and evalu-
ation results are computed. We use as baseline the setting reported by Aker et al. without
any anaphoric features. The evaluation results are computed using fuzzy BCubed Precision,
Recall and F-Measure metrics reported in [25] and [23] and the gold standard clusters. Ac-
cording to the analysis of formal constraints that a cluster evaluation metric needs to fulfill [5],
fuzzy BCubed metrics are superior to other know metrics such as Purity, Inverse Purity, Mutual
Information, Rand Index, etc. as they fulfill all the formal cluster constraints: cluster homogen-
eity, completeness, rag bag and clusters size versus quantity. The results are shown in Table
16.

R P F1
No Coreference 44.8% 42.5% 43.0%

Gold Coreference 45.0% 42.5% 44.0%
BART 2.0 44.5% 42.8% 43.0%

+ all access. features 45.5% 42.3% 44.0%
+ direct strict 45.5% 42.3% 44.0%

+ transitive strict 44.0% 42.3% 43.0%
+ dir. & transit. strict 44.0% 42.3% 43.0%

Table 16: Impact of Coreference on news comment clustering.

The top two rows in Table 16 are the baseline which is topic clustering without using core-
ference, and the upper bound, the case when gold coreferences are used from the human

4We used Weka (http://www.cs.waikato.ac.nz/ml/weka/) implementation of linear regression.
5Please note that at the time of writing of this manuscript, we only had results from a cross validation on four

folds, that is, on half of the data set from the previous section.
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annotation.

From Table 16 we can see that there is some improvement by using coreference in news
comment clustering, in particular, we improve from F1 = 43.0 in the baseline case of not
using coreference to F1 = 44.0 by using all accessibility features, though we note the im-
provement is not statistically significant. However, we do not get significance by using the
human-annotated gold coreferences either, which suggests that more work needs to be done
on how coreference is harnessed to improve clustering. Moreover, we note that the way we
define our anaphoric features inherently leads to high redundancy and correlations amongst
features, and that our method of choice for combining them, linear regression, may be sensit-
ive to correlations between features, and hence, might not be ideal. All this to be explored in
future work.
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5 Task 4.4: Inter-document coreference
for conversations and social media

5.1 Experiments on inter-document coreference
in the social media domain

Similarly as in Period 2, for our inter-document coreference experiments in Period 3 we again
used the JRC-Names resource developed at the Joint Research Centre of the European Com-
mission [49]. It is a highly multilingual named entity resource (persons and organisations),
which consists of large lists of names and their multiple (in the order of hundreds) spelling
variants and transliterations across scripts (Latin, Greek, Arabic, Cyrillic, Japanese, Chinese,
etc.). Plugged into a standard pattern matcher, it can be used for multilingual named entity
disambiguation across documents. Since it was created by analysing millions of news articles
in many languages and over many years6, it can be expected that its optimal performance
would be in the news domain.

We ran JRC-Names over the text versions of the USFD corpus files for English (see previous
section for corpus statistics). The number of different entities found per file for English and
Italian is summarised in Table 17.

Table 17: Number of entities found per file using the JRC entity disambiguator.

File Entities File Entities
articleCommentBartInput0 5 articleCommentBartInput5 23
articleCommentBartInput1 9 articleCommentBartInput9 5
articleCommentBartInput2 21 articleCommentBartInput10 11
articleCommentBartInput3 7 articleCommentBartInput11 12
articleCommentBartInput4 26 articleCommentBartInput12 16

The full output from JRC-Names after processing the file from which the ‘ballistic missile’ ex-
ample was drawn (see previous section), that is, file articarticleCommentBartInput4, is the
following:

found entity id = 342 type p as Menzies Campbell (862)

found entity id = 227606 type p as Danny Alexander (991)

found entity id = 507190 type o as BAE SYSTEMS (7510)

found entity id = 507190 type o as BAE Systems (34602)

6See http://emm.newsexplorer.eu/
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found entity id = 13388 type o as BAE SYSTEMS (7510)

found entity id = 13388 type o as BAE Systems (34602)

found entity id = 118579 type p as Lord Robertson (972)

found entity id = 19266 type p as David Cameron (654)

found entity id = 19267 type p as George Osborne (788)

found entity id = 52043 type p as Ed Miliband (818)

found entity id = 36 type p as Gordon Brown (841)

found entity id = 109848 type p as William Wilberforce (31439)

found entity id = 12637 type p as Phillip Hammond (925)

found entity id = 9138 type o as Red Cross (23811)

found entity id = 87261 type o as Monty Python (15020,18052)

found entity id = 338051 type o as House of Lords (13146)

found entity id = 2170 type p as Alex Salmond (692)

found entity id = 10101 type o as EU (5707,13275,13935,17088)

found entity id = 80780 type o as Cold War (29634)

found entity id = 145579 type p as Alan Shepard (11597)

found entity id = 86156 type p as Queen Elizabeth (94,238,544,3536,4332)

found entity id = 1628241 type o as White Paper (35920)

found entity id = 23557 type o as Royal Navy (412,1212,2402,3103,3333,3755,...)

found entity id = 237270 type o as Ministry of Defence (3002)

found entity id = 197075 type o as Google (13138)

found entity id = 456610 type o as Eurofighter Typhoon (5669)

Once again, in order to have a sense of coverage of the tool we counted the number of core-
ference chains in the gold standard annotation. We include these statistics in Table 18. The
reason why we show them in a separate table is because they are not directly comparable with
the number of entities shown in Table 17, they are only indicative of coverage.7

From Tables 18 and 17 we can see that JRC-Names is able to identify roughly between 2%
and 10% of the entities represented by the annotated coreference chains. It is worth noting
that many of the coreference chains do not represent persons or organisations which are the
scope of the JRC-Names resource.

In some ways the JRC-Names output complements that of BART – it provides the bridge of
coreference chains across documents, because the JRC-Names disambiguates entities to a
unique global id regardless of input. More experiments and an integration at the software level
of both tools could provide more insight into the interrelationships.

7The set of identified entities is not necessarily subsumed by the set of coreference chains, that is, there may
be potentially only partial overlap between the two sets.
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Table 18: Number of coreference chains in the gold standard annotation of the USFD corpus.

English
File Coreference Chains
articleCommentBartInput0 260
articleCommentBartInput1 294
articleCommentBartInput2 228
articleCommentBartInput3 176
articleCommentBartInput4 269
articleCommentBartInput5 251
articleCommentBartInput9 190
articleCommentBartInput10 159
articleCommentBartInput11 220
articleCommentBartInput12 286
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6 Task 4.5: The argumentation structure
of conversations

In this section we describe work during the third year of the project on Task 4.5 of Work
Package 4 (WP4).

6.1 Automatic Labeling of Argument Structures
On-line social conversations concur to the formation of opinions and shared knowledge which
influence decision makers [6]. A large amount of lightly moderated multiparty conversations
take place on-line every day in social forums and news blogs [46], and bloggers who parti-
cipate to these conversations usually express agreement and disagreement with respect to
positions and statements, generating a large amount of conversational data.
From a communication analysis perspective, online multiparty conversations are asynchron-
ous and more complex than synchronous conversations, such as dyadic spoken dialogues. In
asynchronous conversations, bloggers can reply to any other with text messages or pre-coded
actions (e.g. like buttons). Despite the labelling of Argument Structures in text is traditionally
associated to a well-known task such as Semantic role Labelling, we found more interesting
and innovative to extract Agreement/Disagreement Relations (henceforth ADRs). To this pur-
pose we trained a cross-language classifier from asynchronous on-line debates, exploiting the
Italian dataset (CorEA) that we collected and annotated during periods 1 and 2 of the SENSEI
project (see D2.1 and D4.2). This classifier has been used for template-based summarisation
(see D5.3) as well as for monitoring and predicting the outcome of the Brexit campaigning (see
D6.3).
In this section we describe the prediction and evaluation of the Agreement/Disagreement ar-
gument extraction system.

6.1.1 Prediction of Agreement/Disagreement

Previous work on the prediction of ADRs in asynchronous conversations used different ap-
proaches: from the analysis of contextual, dependency and word-based features in the IAC
corpus [1] to the exploitation of the overall position of a blogger in threaded discussion forums
using data manually annotated with lexical features, emotions, duration and sentiment [62]. In
[60] they addressed the problem of ADRs classification on the IAC and AAWD corpora. They
exploited many features, including n-grams, Part-Of-Speech tags, sentiment, TF-IDF and used
Conditional Random Fields as learning algorithm. They achieved performances ranging from
0.56 and 0.58 on Wiki discussions to 0.74 and 0.67 on political debates and found that in the

D4.3 The SENSEI Discourse Analysis Tools, 3 | version 1.0 | page 41/51



AAWD corpus agreement is easier to classify with respect to disagreement, while the contrary
is true in the IAC corpus.
We started from the data collected previously in the SENSEI project: The CorEA corpus [12].
To summarize, CorEA is a collection of asynchronous news blogs conversations in Italian. The
on-line conversations amongst bloggers, in this case, are originated by an on-line news article
and developed within the newspaper social blogging platform. CorEA includes user-annotated
mood metadata and manually annotated ADRs at the message level. The reported inter-
annotator reliability is k=0.58 on 3 classes (“agree”, “disagree”, “not applicable”) and k=0.87
on 2 classes (“agree”, “disagree”). Starting from this dataset, we combined different levels of
analysis for feature extraction: blogger level, message level and at the level of relation between
messages, in order to investigate what are the best predictors of ADRs in asynchronous on-line
conversations in the news media domain.

Features For classification experiments on ADRs, we exploited the features already present
in the data and enriched them with new features at the level of messages, bloggers and parent-
child relations (relational features). Table 19 reports an overview of the features we used at
these levels and in the following subsections we describe each feature class in more detail.

feature type count
stylometric features message 97
topic-word ratio message 1
sentiment polarity message 1
discourse relation sense counts message 4
discourse relation sense ratios message 4
likes message 1
replies count message 1
pair similarity relational 1
article is parent relational 1
sentiment match relational 1
topic match relational 1
personality types blogger 5
mood priors blogger 5
avg replies per message blogger 1
avg likes per message blogger 1
topics-message ratio blogger 1
discourse relation sense sums blogger 4
discourse relation sense ratios blogger 4
stance blogger 1

Table 19: Features used in the experiments at message and blogger levels.
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Message-level Features (107) Discourse Features (8) are frequency counts and ra-
tios (% from total) of the four top-level relation senses from Penn Discourse Treebank (PDTB)
[42]: Comparison, Contingency, Expansion, and Temporal. They are extracted for explicit
discourse relations (signaled by connectives such as but, however, when, etc.) using lexical
context classifier of [44]; and a connective sense classifier trained and tested on Italian LUNA
Corpus [16] annotated with PDTB relations [54] The accuracy of the automatically annotated
discourse features is 80%. In addition to this, we included the count of message likes and
replies (2) as message features.

Sentiment Polarity Features (2) are text-length normalized sums of the polarized words ex-
tracted using OpeNER lexicon8, and their discretisation into positive, neutral, and negative
classes. We evaluated the sentiment annotation on TwITA, a manually annotated dataset of
tweets for sentiment analysis [8], accuracy is 66%.

Stylometric Features (97) are basic text statistics (4) such as word count, vocabulary size,
average word length; frequency-based features (2) such as frequency of hapax legomena;
measures of lexical richness (16) based on word count, vocabulary size, and word-frequency
spectrum such as mean word frequency, type-token ratio, entropy, Guiraud’s R, Honore’s H,
etc. [56]; and word length ratios (30) for 1-30 character long words. The feature set also
includes character-based ratios (45) for character classes (e.g. punctuation, white space, etc.)
and individual characters (e.g. ‘!’, ‘a’, etc.).

Relation-level Features (4) Relation-level features are extracted considering both child
and parent messages (or the article). They include word2vec [36] cosine similarity between
parent and child, boolean feature to indicate whether a parent is an article or another message,
and two boolean features for matches and mismatches between topics and sentiment polarities
expressed in two messages.

Blogger-level Features (22) Blogger-level features are the personality types (5), self-
assessed bloggers’ mood priors (5); the aggregation (sums and averages) of the message-
level discourse (8) features; blogger’s stance (1) and the bloggers’ topic per message ratio (1).
Personality types are defined by the Five Factor Model [13]: extroversion, emotional stabil-
ity/neuroticism, agreeableness, conscientiousness, openness to experience. These features
have been automatically predicted exploiting linguistic cues from the collection of all messages
of the same blogger [31]. Accuracy of the prediction, evaluated on an Italian Facebook dataset
is 65% [11]. Mood priors encoded in CorEA are: indignation, disappointment, worry, amuse-
ment and satisfaction. Stance is defined as the sum of the polarity of messages of a blogger.

8http://www.opener-project.eu/
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6.1.2 Evaluation of Agreement/Disagreement labeling

We addressed the prediction of ADRs at message level as a binary classification task. We
discarded all the “NA” labels, balanced the classes and split the data into 66% training and 33%
testing. In order to prevent overlappings between the training and test set, we sorted messages
by bloggers alphabetically. We experimented with different setting, in order to compare the
contribution of different feature types to the classification task. We used a Support Vector
Machine as learning algorithm and F1-measure as evaluation metric (see Table 20).

settings agree disagree avg
majority baseline 0.500 0.500 0.500
bag of word baseline 0.550 0.624 0.590
message 0.555 0.554 0.550
blogger 0.634 0.568 0.601
relational 0.726 0.684 0.705
message+blogger 0.618 0.560 0.589
message+relational 0.711 0.675 0.693
blogger+relational 0.726 0.684 0.705
all 0.659 0.629 0.644

Table 20: Result of the classification of ADRs using different combination of message features (mf),
blogger features (bf) and relational features (rf), 66% training, 33% test split and a Support Vector
Machine as classifier.

6.2 Towards the next edition of the shared task
ONFORUMS

As pointed out in D7.5 and D7.6 of the project SENSEI, preparations for a second edition of
the shared task ONFORUMS mainly revolved around the preparation and annotation of a new
data set, which we have named internally the USFD corpus. The data set was described in
detail in Section 4.2.1 of this deliverable and the current state of play is that it is ready for
another round of crowdsourcing evaluation on the platform CrowdFlower in the same manner
as the evaluation of ONFORUMS 2015. It features the added value of Coreference annotation
over a subset of it (over 50%) which can be employed either as a new aspect of the shared task
exploring the relationship between agreement structure and coreference or simply to further
research in Coreference in the domain of online forums.
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7 Conclusion
The end-to-end discourse parsing performances are too low to be directly used for down-
stream tasks. Dialog act segmentation and classification performances, on the other hand,
are acceptable high. Thus, dialog acts were used to filter out utterance segments for the
extractive summarization for extrinsic evaluation.

We improved the combined event, temporal expression, and sentiment detection tools and
developed an additional version of the prototype user interface which incorporates its results
into the output, although this was not ready at the time of the formal evaluation described in
D1.4.

Working under the assumption that discourse structure effects on Coreference are stronger
in comment threads on online forums than in the standard news domain and that such struc-
ture can be identified reliably on the basis of the reply structure of the thread, we devised
machine learning features to model thread structure and ran experiments with BART. Using
such features we attained significant improvements with certain configurations over a baseline
without thread awareness which proves our approach promising. However, work on creating
more data and more features is required in order to be able to train models which consistently
outperform the baseline.

The second conclusion from the work on Coreference on comment threads is that its effects
on higher level tasks, such as Clustering, suggest possibilities for improvement, but a lot of
effort needs to be put into how it is harnessed into the task.

On inter-document coreference, we used again the JRC-Names resource developed at the
JRC to run experiments on the USFD corpus. We found that JRC-Names is able to identify
roughly between 2% and 10% of the entities represented by the annotated coreference chains.
This was a lower coverage than the experiments on the shared task dataset from Period 2,
possibly due to the new dataset featuring less person and organisation references, and hence,
outside of the scope of the JRC tool.

Agreement/disagreement structures proved to be a valuable source of information, as we suc-
cessfully used it for the prediction of Brexit as well as in the summarisation tasks (see D6.3).

Finally, given the successful completion of the shared task ONFORUMS in 2015 and having
now a new data set prepared and ready, we hope to be in a position to run it again in 2017.
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